C# Primer: A Practical Approach

By Stanley B. Lippman

Now Stan Lippman brings you C# using his famed primer format. C# PRIMER is a
comprehensive, example-driven introduction to this new object-oriented programming
language.

C# is a cornerstone of Microsoft's new .NET platform. Inheriting many features from both
Java and C++, C# is destined to become the high-level programming language of choice
for building high-performance Windows and Web applications and components--from XML-
based Web services to middle-tier business objects and system-level applications.

First, you will tour the language, looking at built-in features such as the class mechanism,
class inheritance, and interface inheritance--all while you build small programs. Next, you
will explore the various library domains supported within the .NET class framework. You
will also learn how to use the language and class framework to solve problems and build
quality programs.

Highlights include:

e Covers fundamentals such as namespaces, exception handling, and unified type
system

e Presents a wide-ranging tour of the .NET class library, introducing ADO.NET and
establishing database connections and the use of XML

e Provides XML programming using the firehose and DOM parser models, XSLT,
XPATH, and schemas

e Focuses on ASP.NET Web Form Designer, walking through the page life-cycle and
caching, and providing a large number of examples.

e Introduces .NET Common Language Runtime (CLR)

Adding C# to your toolbox will not only improve your Web-based programming ability, but
also increase your productivity. C# PRIMER provides a solid foundation to build upon and a
refreshingly unbiased voice on Microsoft's vehicle to effective and efficient Web-based
programming.

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book and Addison-
Wesley, Inc. was aware of a trademark claim, the designations have been printed with
initial capital letters or all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

Illustrations in Figures 6.7 and 6.17 by Elena Driskill. Reprinted with permission.

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information, please contact:

Pearson Education Corporate Sales Division

201 W. 103™ Street

Indianapolis, IN 46290

(800) 428-5331

corpsales@pearsoned.com

Visit AW on the Web: www.aw.com/cseng/

Library of Congress Cataloging-in-Publication Data

Lippman, Stanley B.

C# Primer : a practical approach /Stanley B. Lippman.

p. cm.—(DevelopMentor series)

Includes bibliographical references and index.

ISBN 0-201-72955-5

1. C# (Computer program language) I. Title. II. Series.

QA76.73.C154 L575 2001

005.13'3—dc21 2002053659

Copyright © 2002 Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher. Printed

in the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a
written request to:

Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper

123456789 10—CRS—0504030201

First printing, December 2001

Dedication

Beth Imagine, we have shared a lifetime together. Thanks for understanding and being
there

Danny Hey, dude. Wassup? So this is what I've been doing— I know you thought I just
didn't want to help with your algebra ...

Anna Whoa. It's really done. I know, finally. A slew of IOU's: Legoland, the batting cage,
Hogwarts ...

And in loving memory of George and Ray Lippman

Preface

C# is a new language invented at Microsoft and introduced with visual Studio.NET. More than a
million lines of C# code already have gone into the implementation of the .NET class
framework. This book covers the C# language and its use in programming the .NET class
framework, illustrating application domains such as aAsp.NeT and XML.

My general strategy in presenting the material is to introduce a programming task and
then walk through one or two implementations, introducing language features or aspects
of the class framework as they prove useful. The goal is to demonstrate how to use the
language and class framework to solve problems rather than simply to list language
features and the class framework API.

Learning C# is a two-step process: learning the details of the C# language and then
becoming familiar with the .NET class framework. This two-step process is reflected in the
organization of this text.

In the first step we walk through the language—both its mechanisms, such as class and

interface inheritance and delegates, and its underlying concepts, such as its unified type
system, reference versus value types, boxing, and so on. This step is covered in the first
four chapters.

The second step is to become familiar with the .NET class framework, in particular with
Windows and Web programming and the support for XML. This is the focus of the second
half of the book.

Working your way through the text should jump-start your C# programming skills. In
addition, you'll become familiar with a good swatch of the .NET class framework. All the
program code is available for download at my company's Web site www.objectwrite.com.

Mail can be sent to me directly at slippman@objectwrite.com.

Organization of the Book

The book is organized into eight relatively long chapters. The first four chapters focus on
the C# language, looking at the built-in language features, the class mechanism, class
inheritance, and interface inheritance. The second four chapters explore the various library
domains supported within the .NET class framework.

Chapter 1 covers the basic language, as well as some of the fundamental classes provided
within the class framework. The discussion is driven by the design of a small program.
Concepts such as namespaces, exception handling, and the unified type system are
introduced.

chapter 2 covers the fundamentals of building classes. We look at access permission,
distinguish between const and readonly members, and cover specialized methods such
as indexers and properties. We walk through the different strategies of member
initialization, as well as the rules for operator overloading and conversion operators. We
look at the delegate type, which serves as a kind of universal pointer to a function.

chapters 3 and 4 cover, in turn, class and interface inheritance. Class inheritance allows us to
define a family of specialized types that override a generic interface, such as an abstract
WebRequest base class and a protocol-specific HttpWebRequest subtype. Interface
inheritance, on the other hand, allows us to provide a common service or shared attribute
for otherwise unrelated types. For example, the IDisposable interface frees resources.
Classes holding database connections or window handles are both likely to implement
IDisposable, although they are otherwise unrelated.

chapter 5 provides a wide-ranging tour of the .NET class library. We look at input and output,
including file and directory manipulation, regular expressions, sockets and thread
programming, the WebRequest and WebResponse class hierarchies, a brief introduction
to Apo.nET and establishing database connections, and the use of XML.

Chapters 6 and 7 cover, in turn, drag-and-drop Windows Forms and Web Forms development.
chapter 7 focuses on Asp.NET, and the Web page life cycle. Both chapters provide lots of
examples of using the prebuilt controls and attaching event handlers for user interaction.

The final chapter provides a programmer's introduction to the .NET Common Language
Runtime. It focuses on assemblies, type reflection, and attributes, and concludes with a
brief look at the underlying intermediate language that is the compilation target of all .NET
languages.

Written for Programmers

The book does not assume that you know C++, Visual Basic, or Java. But it does assume
that you have programmed in some language. So, for example, I don't assume that you
know the exact syntax of the C# foreach loop statement, but I do assume that you know
what a loop is. Although I will illustrate how to invoke a function in C#, I assume you know
what I mean when I say we "invoke a function." This text does not require previous
knowledge of object-oriented programming or of the earlier versions of ASP and ADO.

Some people—some very bright people—argue that under .NET, the programming
language is secondary to the underlying Common Language Runtime (CLR) upon which the
languages float like the continents on tectonic plates. I don't agree. Language is how we
express ourselves, and the choice of one's language affects the design of our programs.
The underlying assumption of this book is that C# is the preferred language for .NET
programming.

The book is organized into eight relatively long chapters. The first set of four chapters
focuses on the C# language, looking at the built-in language features, the class
mechanism, class inheritance, and interface inheritance. The second set of four chapters
explores the various library domains supported within the .NET class framework, such as
regular expressions, threading, sockets, Windows Forms, asp.NeT, and the Common
Language Runtime.

Lexical Conventions

Type names, objects, and keywords are set off in Courier font, as in int, a predefined
language type; Console, a class defined in the framework; maxCount, an object defined
either as a data member or as a local object within a function; and foreach, one of the
predefined loop statements. Function names are followed by an empty pair of parentheses,
as in WriteLine (). The first introduction of a concept, such as garbage collection or data
encapsulation, is highlighted in italics. These conventions are intended to make the text
more readable.

Acknowledgments

This book is the result of many invisible hands helping to keep its author on course. My
most heartfelt thanks go to my wife, Beth, and my two children, Daniel and Anna. I have
accumulated all too many IOUs in deferring this or that family outing in order to get this
book done. Thank you all for being (mostly) patient and understanding and not too often
asking if I was done yet.

I need to thank Caro Segal and Shimon Cohen of you-niversity.com, who provided me with a
generous gift of time and encouragement. May the force be with you. I also owe a serious
round of thanks to Eric Gunnerson, Peter Drayton, and Don Box, all of whom at one time
or another fulfilled the role of white knight on horseback.

I would like to deeply thank Elena Driskill. Twice. First for the gift of those lovely drawings
in chapter 6. Second for her kind permission to reproduce them.

Deborah Lafferty has been my editor since the first edition of my C++ Primer back in 1986.
She has been a constant source of good sense and understanding, and I deeply appreciate
her encouragement (and prodding) in seeing this project through.

A pair of special production thanks go to Stephanie Hiebert and Steve Hall. Stephanie is
the supreme copy editor of my nearly two decades of publishing. She made this a better
book. Steve hoisted me back onto my typesetting saddle after having been thrown by
wildly pernicious Framemaker problems. A tip of my virtual hat to the both of you.

The following reviewers offered numerous thoughtful comments and suggestions in
reviewing various drafts of this manuscript: Indira Dhingra (special thanks for providing a
final sanity check of the manuscript), Cay Horstmann, Eugene Kain, Jeff Kwak, Michael
Lierheimer, Drew Nathanson, Clovis Tondo, and Damien Watkins.

Portions of this manuscript have been tried out in courses and talks held across the globe:
Sydney, Amsterdam, Munich, Tel Aviv, Orlando, San Francisco, and San Jose. Thanks to
everyone who provided feedback.

Resources

The richest documentation that you will be returning to time and again is the visual Studio.NET
documentation. The .NET framework reference is essential to doing any sort of C#/.NET
programming.

Another rich source of information about .NET consists of the featured articles and columns
in the MSDN Magazine. I'm always impressed by what I find in each issue. You can find it

online at http://msdn.microsoft.com/msdnmag.

The DOTNET mailing list sponsored by DevelopMentor is a rich source of information. You
can subscribe to it at http://discuss.develop.com.

Anything Jeffrey Richter, Don Box, Aaron Skonnard, or Jeff Prosise writes about .NET (or
XML in Aaron's case) should be considered essential reading. Currently, most of their
writing has appeared only as articles in MSDN Magazine.

Here is the collection of books that I have referenced or found helpful:

e Active Server Pages+, by Richard Anderson, Alex Homer, Rob Howard, and Dave
Sussman, Wrox Press, Birmingham, England, 2000.

e C# Essentials, by Ben Albahari, Peter Drayton, and Brad Merrill, O'Reilly,
Cambridge, MA, 2001.

e C# Programming, by Burton Harvey, Simon Robinson, Julian Templeman, and Karli
Watson, Wrox Press, Birmingham, England, 2000.

e Essential XML: Beyond Markup, by Don Box, Aaron Skonnard, and John Lam,
Addison-Wesley, Boston, 2000.

e Microsoft C# Language Specifications, Microsoft Press, Redmond, WA, 2001.

e A Programmer's Introduction to C#, 2nd Edition, by Eric Gunnerson, Apress,
Berkeley, CA, 2001.

Stanley Lippman
Los Angeles
November 18, 2001
www.objectwrite.com

Chapter 1. Hello, C#

My daughter has cycled through a number of musical instruments. With each one she is
anxious to begin playing the classics—no, not Schubert or Schoenberg, but the Backstreet
Boys and Britney Spears. Her various teachers, keen to keep her interest while grounding
her in the fundamentals, have tended to indulge her. In a sense this chapter attempts the
same precarious balance in presenting C#. In this context the classics are represented by
Web Forms and Type Inheritance. The fundamentals are the seemingly mundane
predefined language elements and mechanisms, such as scoping rules, arithmetic types,
and namespaces. My approach is to introduce the language elements as they become
necessary to implement a small first program. For those more traditionally minded, the
chapter ends with a summary listing of the predefined language elements.

C# supports both integral and floating-point numeric types, as well as a Boolean type, a
Unicode character type, and a high-precision decimal type. These are referred to as the
simple types. Associated with these types is a set of operators, including addition (+),
subtraction (-), equality (==), and inequality (!=). C# provides a predefined set of
statements as well, such as the conditional if and switch statements and the looping
for, while, and foreach statements. All of these, as well as the namespace and
exception-handling mechanisms, are covered in this chapter.

1.1 A First C# Program

The traditional first program in a new language is one that prints Hello, World! on the
user's console. In C# this program is implemented as follows:

// our first C# program
using System;
class Hello

{

public static void Main ()

{

Console.WriteLine("Hello, World!"™);

}

When compiled and executed, this code generates the canonical

Hello, World!

Our program consists of four elements: (1) a comment, introduced by the double slash
(//), (2) a using directive, (3) a class definition, and (4) a class member function
(alternatively called a class method) named Main ().

A C# program begins execution in the class member function Main (). This is called the
program entry point. Main () must be defined as static. In our example, we declare it
as both public and static.

public identifies the level of access granted to Main (). A member of a class declared as
public can be accessed from anywhere within the program. A class member is generally
either a member function, performing a particular operation associated with the behavior
of the class, or a data member, containing a value associated with the state of the class.
Typically, class member functions are declared as public and data members are declared
as private. (We'll look at member access levels again as we begin designing classes.)

Generally, the member functions of a class support the behavior associated with the class.
For example, WriteLine () is a public member function of the Console class.
WriteLine () prints its output to the user's console, followed by a new-line character. The
Console class provides a Write () function as well. Write () prints its output to the
terminal, but without inserting a new-line character. Typically, we use Write () when we
wish the user to respond to a query posted to the console, and WriteLine () when we
are simply displaying information. We'll see a relevant example shortly.

As C# programmers, our primary activity is the design and implementation of classes.
What are classes? Usually they represent the entities in our application domain. For
example, if we are developing a library checkout system, we're likely to need classes such
as Book, Borrower, and DueDate (an aspect of time).

Where do classes come from? Mostly from programmers like us, of course. Sometimes, it's
our job to implement them. This book is designed primarily to make you an expert in doing
just that. Sometimes the classes are already available. For example, the .NET System
framework provides a DateTime class that is suitable for use in representing our DueDate
abstraction. One of the challenges of becoming an expert C# programmer—and not a
trivial one at that—is becoming familiar with the more than 1,000 classes defined within
the .NET framework. I can't cover all of them here in this text, but we'll look at quite a
number of classes, including support for regular expressions, threads, sockets, XML and
Web programming, database support, and the new way of building a Windows application.

A challenging problem is how to logically organize a thousand or more classes so that
users (that's us) can locate and make sense of them (and keep the names from colliding
with one another). Physically, we can organize them within directories. For example, all
the classes supporting Active Server Pages (ASP) can be stored in an asp.nNeT directory
under a root system.NET directory. This makes the organization reasonably clear to someone
poking around the file directory structure.

What about within programs? As it turns out, there is an analogous organizing mechanism
within C# itself. Rather than defining a physical directory, we identify a namespace. The
most inclusive namespace for the .NET framework is called System. The Console class,
for example, is defined within the System namespace.

Groups of classes that support a common abstraction are given their own namespace
defined within the System namespace. For example, an Xm1 namespace is defined within
the System namespace. (We say that the Xm1 namespace is nested within the System
namespace.) Several namespaces in turn are nested within the Xm1 namespace. There is a
Serialization namespace, for example, as well as XPath, Xs1, and Schema
namespaces. These separate namespaces within the enclosing Xm1 namespace are
factored out to encapsulate and localize shared functionality within the general scope of
XML. This arrangement makes it easier to identify the support, for example, that .NET
provides for the World Wide Web Consortium (W3C) XPath recommendation. Other
namespaces nested within the System namespace include I0, containing file and directory
classes, Collections, Threading, Web, and so on.

In a directory structure, we indicate the relationship of contained and containing
directories with the backslash (\), at least under Windows—for example,

System\Xml\XPath

With namespaces, similar contained and containing relationships are indicated by the
scope operator (.) in place of a backslash—for example,

System.Xml.XPath

In both cases we know that XPath is contained within Xm1, which is contained within
System.

Whenever we refer to a name in a C# program, the compiler must resolve that name to an
actual declaration of something somewhere within our program. For example, when we
write

Console.WriteLine ("Hello, World");

the compiler must somehow discover that Console is a class nhame and that WriteLine ()
is @ member function within the Console class—that is, within the scope of the Console
class definition. Because we have defined only the Hello class in our file, without our help
the compiler is unable to resolve what the name Console refers to. Whenever the

compiler cannot resolve what a name refers to, it generates a compile-time error, which
stops our program from building:

C:\C#Programs\hello\hello.cs(7) :

The type or namespace name 'Console' does
not exist in the class or namespace

The using directive in our program,

using System;

directs the compiler to look in the System namespace for any names that it cannot
immediately resolve within the file it is processing—in this case, the file that contains the
definition of our Hello class and its Main () member function.

Alternatively, we can explicitly tell the compiler where to look:

System.Console.WriteLine("Hello, World");

Some people—actually some very smart and otherwise quite decent people—believe that
explicit listing of the fully qualified name—that is, the one that identifies the full set of
namespaces in which a class is contained—is always preferable to a using directive. They
point out that the fully qualified name clearly identifies where the class is found, and they
believe that is useful information (even if it is repeated 14 times within 20 adjacent lines).
I don't share that belief (and I really don't like all that typing). In my text—and this is one
of the reasons we authors write books—the fully qualified name of a class is never used,!
except to disambiguate the use of a type name (see section 1.2 for an illustration of
situations in which this is necessary).

1 The Visual Studio wizards, such as Windows Forms and Web Forms, generate fully qualified names. However,
because the names are machine generated, this does not really qualify as a counterexample.

Earlier I wrote that classes come mostly either from other programmers or from libraries
provided by the development system. Where else do they come from? The C# language
itself. C# predefines several heavily used data types, such as integers, single- and double-
precision floating-point types, and strings. Each has an associated type specifier that
identifies the type within C#: int represents the primitive integer type; float, the
primitive single-precision type; double, the double-precision type; and string, the string
type. (See Tables 1.2 and 1.3 in section 1.18.2 for a list of the predefined numeric types.)

For example, an alternative implementation of our simple program defines a string
object initialized with the "Hello, World!" string literal:

public static void Main () {
string greeting = "Hello, World!"
Console.WriteLine (greeting);

string is a C# keyword — that is, a word reserved by the C# language and invested with
special meaning. public, static, and void are also keywords in the language.
greeting is referred to as an identifier. It provides a name for an object of type string.
Identifiers in C# must begin with either an underscore (_) or an alphabet character. The
names are case sensitive, so greeting, Greeting, and Greetingl each represent a
unique identifier.

A common flash point among programmers centers on whether compound names should
be separated by an underscore, as in xml text reader, or by capitalization of the first
letter of each internal word, as in xm1TextReader. By convention, identifiers that
represent class names usually begin with a capital letter, as in Xm1TextReader.

Within a unit of program visibility referred to as a declaration space, or scope, identifiers
must be unique. At local scope—that is, within a function body, such as within our
definition of Main () —this is not a problem because we generally control the entire
definition of any object within our function. As the extent of the scope widens—that is, as
the number of programmers or organizations involved increases—the problem of unique
identifiers becomes more difficult. This is where namespaces come into the picture.

1.2 Namespaces

Namespaces are a mechanism for controlling the visibility of names within a program.
They are intended to help facilitate the combination of program components from various
sources by minimizing name conflicts between identifiers. Before we look at the
namespace mechanism, let's make sure we understand the problem that namespaces were
invented to solve.

Names not placed within a namespace are automatically placed in a single unnamed global
declaration space. These names are visible throughout the program, regardless of whether
they occur in the same or a separate program file. Each name in the global declaration
space must be unique for the program to build. Global names make it difficult to
incorporate independent components into our programs.

For example, imagine that you develop a two-dimensional (2D) graphics component and
name one of your global classes Point. You use your component, and everything works
fine. You tell some of your friends about it, and they naturally want to use it as well.

Meanwhile, I develop a three-dimensional (3D) graphics component and in turn name one
of my global classes Point. I use my component, and everything also works fine. I show
it to some of my friends. They're excited about it and wish to use it as well. So far,
everyone is happy—well, at least about our coding projects.

Now imagine that we have a friend in common. She's implementing a 2D/3D game engine
and would like use our two components, both of which come highly praised. Unfortunately,
when she includes both within her application, the two independent uses of the Point
identifier result in a compile-time error. Her game engine fails to build. Because she does
not own either component, there is no easy fix for the two components to work together.

Namespaces provide a general solution to the problem of global name collision. A
namespace is given a name within which the classes and other types we define are
encapsulated.? That is, the names placed within a namespace are not visible within the
general program. We say that a namespace represents an independent declaration space
or scope.

121 Only namespaces and types can be declared within the global namespace. A function can be declared only as a
class member. A data object can be either a class member or a local object within a function, such as our declaration
of greeting.

Let's help our mutual friend by providing separate namespaces for our two Point class
instances:

namespace DisneyAnimation 2DGraphics

{
public class Point { ... }

//
}

namespace DreamWorksAnimation 3DGraphics

{
public class Point { ... }

/7

The keyword namespace introduces the namespace definition. Following that is a name
that uniquely identifies the namespace. (If we reuse the name of an existing namespace,
the compiler assumes that we wish to add additional declarations to the existing
namespace. The fact that the two uses of the hamespace name do not collide allows us to
spread the namespace declaration across files.)

The contents of each namespace are placed within a pair of curly braces. Our two Point
classes are no longer visible to the general program; each is nested within its respective
namespace. We say that each is a member of its respective namespace.

The using directive in this case is too much of a solution. If our friend opens both
namespaces to the program—

using DisneyAnimation 2DGraphics;
using DreamWorksAnimation 3DGraphics;

the unqualified use of the Point identifier still results in a compile-time error. To
unambiguously reference this or that Point class, we must use the fully qualified name—
for example,

DreamWorksAnimation 3DGraphics.Point origin;

If we read it from right to left, this declares origin to be an instance of class Point
defined within the DreamWorksAnimation 3DGraphics namespace.

The ambiguity within and between namespaces is handled differently depending on the
perceived amount of control we have over the name conflict. In the simplest case, two
uses of the same name occur within a single declaration space, triggering an immediate
compile-time error when the second use of the name is encountered. The assumption is
that the affected programmer has the ability to modify or rename identifiers within the
working declaration space where the name conflict occurs.

It becomes less clear what should happen when the conflict occurs across hamespaces. In
one case, we open two independent namespaces, each of which contains a use of the

same name, such as the two instances of Point. If we make explicit use of the multiply-
defined Point identifier, an error is generated; the compiler does not try to prioritize one
use over the other or otherwise disambiguate the reference. One solution, as we did earlier,

is to qualify each identifier's access. Alternatively, we can define an alias for either one or
all of the multiply-defined instances. We do this with a variant of the using directive, as
follows:

namespace GameApp

{
// exposes the two instances of Point
using DisneyAnimation 2DGraphics;
using DreamWorksAnimation 3DGraphics;

// OK: create unique identifiers for each instance
using Point2D = DisneyAnimation 2DGraphics.Point;
using Point3D = DreamWorksAnimation 3DGraphics.Point;

class myClass

{
Point2D thisPoint;
Point3D thatPoint;

The alias is valid only within the current declaration space. That is, it doesn't introduce an
additional permanent type name associated with the class. If we try to use it across
namespaces, such as in the following:

namespace GameEngine

{
class App

{
// error: not recognized
private GameApp.Point2D origin;

the compiler wants nothing to do with it, generating the following message:

The type or namespace name 'Point2D' does not exist in the class
or namespace 'GameApp'

When we use a hamespace, we generally have no idea how many names are defined
within it. It would be very disruptive if each time we added an additional namespace, we
had to hold our breath while we recompiled to see if anything would now break. The
language, therefore, minimizes the disruption that opening a namespace can cause to our
program.

If two or more instances of an identifier, such as our two Point classes, are made visible
within our working declaration space through multiple using directives, an error is
triggered only with an unqualified use of the identifier. If we don't access the identifier, the
ambiguity remains latent, and neither an error nor a warning is issued.

If an identifier is made visible through a using directive that duplicates an identifier we
have defined, our identifier has precedence. An unqualified use of the identifier always
resolves to our defined instance. In effect, our instance hides the visibility of the identifier

contained within the namespace. The program continues to work exactly as it had prior to
our use of the additional namespace.

What sorts of names should be given to our namespaces? Generic names such as
Drawing, Data, Math, and so on are unlikely to be unique. A recommended strategy is to
add a prefix that identifies your organization or project group.

Namespaces are a necessary element of component development. As we've seen, they
facilitate the reuse of our software in other program environments. For less ambitious
programs, however, such as the Hello program at the start of this chapter, the use of a
namespace is unnecessary.

1.3 Alternative Forms of the Main () Function

In the rest of this chapter we'll explore the predefined elements of the C# language as we
implement a small program called WordCount. WordCount opens a user-specified text file
and calculates the number of occurrences of each word within the file. The results are
sorted in dictionary order and written to an output file. In addition, the program supports
two command-line options:

-t causes the program to turn a trace facility on; by default, tracing is off.

2. -s causes the program to calculate and report the amount of time it takes to read
the file, process the words, and write the results; by default, timings are not
reported.

Our first task in Main () is to access the command-line arguments passed in to our
program, if any. We do that by using a second form of Main (), which defines a one-
parameter function signature:

class EntryPoint

{

public static void Main(string [] args) {}

}

args is defined as an array of string elements. args is automatically filled with any
command-line arguments specified by the user. For example, if the user invoked our
program as follows:

WordCount -s mytext.txt

the first element of args would hold -s and the second element would hold mytext.txt.

In addition, either form of the Main () function may optionally return a value of type int:

public static int Main() {}
public static int Main(string [] args) {}

The return value is treated as the exit status of the program. By convention, a return value
of 0 indicates that the program completed successfully. A nonzero value indicates some
form of program failure. A void return type, paradoxically, internally results in a return
status of 0; that is, the execution environment always interprets the program as having
succeeded. In the next section we look at how we can use this second form of Main ().

1.4 Making a Statement

The first thing we need to do is determine if the user specified any arguments. We do this
by asking args the number of elements it contains.2! For our program I decided that if the
user doesn't supply the necessary command-line arguments, the program shuts down. (As
an exercise, you may wish to reimplement the program to allow the user to interactively
enter the desired options. The program is certainly friendlier that way.)

B31In C#, we cannot write if (!args.Length) to test whether the array is empty because 0 is not interpreted as
meaning false.

In my implementation, if args is empty, the program prints an explanation of the correct
way to invoke WordCount, then exits using a return statement. (The return statement
causes the function in which it occurs to terminate—that is, to return to the location from

which it was invoked.)

public static void Main(string [] args)
if (args.Length == 0)

display usage();
return;

Length is a property of an array. It holds a count of the number of elements currently
stored in the array. The test of Length is placed within the conditional test of the C# if
statement. If the test evaluates to true, the statement immediately following the test is
executed; otherwise it is ignored. If multiple statements need be executed, as in our
example, they must be enclosed in curly braces (the text within the braces is called a
statement block).

A common mistake that beginners make is to forget the statement block when they wish
to execute two or more statements:

I These code fragments all occur within the Main () function. To save space, I do not show the enclosing
declaration of Main ().

// this is an incorrect usage of the if statement

if (args.Length == 0)
display usage();
return;

The indentation of return reflects the programmer's intention. It does not, however,
reflect the program's behavior. Without the statement block, only the function is

conditionally executed; the return statement is executed whether or not the array is
empty.

The return statement can also return a value. This value becomes the return value of the
function—for example,

public static int Main(string [] args)

{

if (args.Length ==)
{
display usage();
return -1; // indicate failure

The rule is that the value following the return statement must be compatible with the
return type of the function. Compatible can mean one of two things. In the simplest case,
the value being returned is the same type as that indicated as the return type of the
function. The value -1, for example, is of type int. The second meaning of compatible
requires that an implicit conversion exist between the actual return value and the
function's return type.

The if-else statement allows us to select between alternative statements on the basis of
the truth of a particular condition. The else clause represents a statement or statement
block to be executed if the tested condition evaluates to false. For example, if we chose
not to immediately return on discovering an empty args array, we could provide the
following if-else statement instead:

if (args.Length == 0)
display usage();
else { /* do everything else here ... */ }

To access the individual command-line options, we'll use a foreach loop to iterate across
the array, reading each element in turn. For example, the following loop statement prints
each option to the user's console:

foreach (string option in args)
Console.WriteLine (option);

option is a read-only string object. It is visible only within the body of the foreach
statement. Within each iteration of the loop, option is set to refer to the next element of
the args array.

For our program, we'll compare each string element against the set of supported options.
If the string does not match any of the options, we'll check to see if the string represents a
text file. Whenever we are testing a series of mutually exclusive conditions, as we are in
this case, we typically combine the tests into a chain of 1 f-else-if statements—for
example,

bool traceOn = false,
bool spyOn = false;

foreach (string option in args)
{
if (option.Equals("-t"))
traceOn = true;
else
if (option.Equals("-s"))
spyOn = true;
else
if (option.Equals("-h"))
{ display usage(); return; }
else
check valid file type(option);

The bool keyword represents a Boolean data type that can be assigned the literal values
true or false. In our example, traceOn and spyOn represent two Boolean objects
initialized to false.

Equals () is a nonstatic member function of string. Nonstatic member functions (also
referred to as instance member functions) are invoked through an instance of the class for
which the function is a member—in this case, the string object option. The expression

option.Equals("-t")

instructs the compiler to invoke the string instance method Equals () to compare the
string stored within option with the string literal "-t". If the two are equal, Equals ()
returns true; otherwise, it returns false.

If the mutually exclusive conditions are constant expressionst®, we can turn our chain of
if-else-if statements into the somewhat more readable switch statement—for
example,

151 A constant expression represents a value that can be evaluated at compile time. Typically, this means that the
expression cannot contain a data object. (The value associated with a data object cannot be evaluated until runtime
execution of our program.)

foreach (string option in args)
switch (option)
{
case "-t":
traceOn = true;
break;

case "-s":
spyOn = true;
break;

case "-h":
display usage();

return;

default:

check valid file type(option);
break;

The switch statement can be used to test a value of an integral type, a char type, an
enumeration, or a string type. The switch keyword is followed by the expression
enclosed in parentheses. A series of case labels follows the switch keyword, each
specifying a constant expression. Each case label must specify a unique value.

The result of the expression is compared against each case label in turn. If there is a
match, the statements following the case label are executed. If there is no match and the
default label is present, the statements associated with the default label are executed.
If there is no match and no default label, nothing happens. (There can be only one
default label.)

Each nonempty case label must be followed either by a break statement or by another
terminating statement, such as a return or a throw; otherwise a compiler error results.
(throw passes program control out of the current function into the runtime exception-
handling mechanism. We look at exception handling in section 1.17. The break statement
passes program control to the statement following the terminating curly brace of the
switch statement.)

An empty case label is the one exception to this rule. It does need not have a break
statement. We do this typically when multiple values require the same action—for example,

switch (next char)
{
case 'a':
case 'A':
acnt++;
break;

// to illustrate an alternative syntax
case 'e': ~case 'E': ecnt++; break;

// ... the other vowels
case '\0': return; // OK

default: non vowel cnt++; break;

If we wish to execute the body of two case labels—the first of which is not empty—we
must use a special goto statement that targets either an explicit case label or the
default label:

switch (text word)
{

case "C#":

case "c#":

csharp_cnt++;

goto default;

case "C++":
case "ct++":

cplus _cnt++;
goto default;

case "Java':
case "java": goto case "C#";

default:

word cnt++;
break;

1.5 Opening a Text File for Reading and Writing

Let's assume that the user has entered a valid text file name for the program. Our job,
then, is to open the file, read its contents, and after processing those contents, write the
results out to a second file, which we need to create. Let's see how we do this.

Support for file input/output is encapsulated in the System.I0 namespace. So the first
thing we need to do is open the namespace to the compiler:

using System.IO;

Text files are read and written through the StreamReader and StreamWriter classes.
There are various ways to create instances of these classes—for example,

string file name = @"C:\fictions\gnome.txt";

StreamReader freader = File.OpenText(file name);
StreamWriter fwriter =
File.CreateText (Q"C:\fictions\gnome.diag");

OpenText () returns a StreamReader instance bound to the file represented by the
string argument passed to it. In this case, it opens a text file stored in the fictions
directory on drive C:. The file represented by the string must exist, and the user must
have permission to open it; otherwise OpenText () throws an exception.

The @ character identifies the string literal that follows it as a verbatim string literal. In an
ordinary string literal, a backslash is treated as a special character. For example, when we
write "\n", the backslash and the n are interpreted as an escape sequence representing
the new-line character. When we wish an actual backslash to appear in a string literal, we
must escape it by preceding it with an additional backslash—for example,

string fnamel = "C:\\programs\\primer\\basic\\hello.cs";

Within a verbatim string literal, special characters, such as the backslash, do not need to
be escaped.

A second difference between an ordinary and a verbatim string literal is the ability of a
verbatim string literal to span multiple lines. The nested white space within the multiple-
line verbatim string literal, such as a new-line character or a tab, is preserved. This allows
for the storage and generation of formatted text blocks. For example, here is how we
might implement display usage ():

public void display usage ()
{
string usage =
@"usage: WordCount [-s] [-t] [-h] textfile.txt
where [] indicates an optional argument
-s prints a series of performance measurements
-t prints a trace of the program
-h prints this message";
Console.WriteLine (usage);

CreateText () returns a StreamWriter instance. The file represented by the string
argument passed to it, if it exists, is overwritten. To append to a file's existing text rather
than overwriting it, we use AppendText ().

StreamReader provides a collection of read methods allowing us to read a single
character, a block of characters, or, using ReadLine (), a line of text. (There is also a
Peek () method to read one character ahead without extracting it from the file.)
StreamWriter provides instances of both WriteLine () and Write ().

The following code segment reads each line of a text file in turn, assigning it to the string
object text line. StreamReader signals that it has reached the end of the file by
returning a null string. The additional parentheses around the assignment of text line
are necessary because of what is called operator precedence (see section 1.18.4 for a
discussion):

string text line;
while ((text line = freader.ReadLine()) != null)
{

// write to output file

fwriter.WritelLine(text line);

}

// must explicitly close the readers
freader.Close () ;
fwriter.Close () ;

When we finish with the readers, we must invoke their associated Close () member
functions in order to free the resources associated with them.

18] If you are a C++ programmer, you are accustomed to having the class destructor automatically free resources. In
a garbage-collected environment, however, destructors cannot provide that service. Rather we provide a Dispose ()
function, which is discussed in Section 4.8. Close () is an alternative form of Dispose ().

1.6 Formatting Output

In addition to writing each line of text to the output file, let's extend the previous code
segment to also write the line to the user's console. When writing to the console, however,
we want to indicate the line number and the length of the line in characters, as well as the
text itself. In addition, we don't want to echo an empty line. Here is the relevant portion of
the modified code segment:

string text line;
int line cnt = 1;

while ((text line = freader.ReadLine()) != null)
{
// don't format empty lines
if (text line.Length == 0)
{
Console.WriteLine () ;
continue;

// format output to console:
// 1 (42): Master Timothy Gnome left home one morning

Console.WriteLine("{0} ({2}): {1}",
line cnt++, text line, text line.Length);

The continue statement allows us to short-circuit the remaining portion of the loop body.
In this example, if the text line is empty, we write a new line to the console and then
prematurely terminate this iteration of the loop body before writing the line of text to the
console. The continue statement causes the next iteration of the loop to begin
immediately.

Similarly, a break statement causes the premature termination of the loop itself. For
example, we might use the break statement when we are iterating through a collection
searching for a value. Once the value has been found, we break out of the loop. An
extreme example of this idiom is the nonterminating condition test for a loop—for example,

while (true)

// process until some condition occurs
//

if (condition occurs)
break;

The assumption is that an internal state of the class or application causes the eventual
invocation of the break statement, terminating the loop.

WriteLine () allows us to pass positional arguments within a literal string—for example,

Console.WriteLine("Hello, {0}! Welcome to C#", user name);

When a number enclosed within curly braces, such as {0}, is encountered within the literal
string, it's treated as a placeholder for the associated value in the list of parameters that
follows the literal string. 0 represents the first value, 1 represents the second value, and
so on. The numbered placeholders can appear in any order, as in this example:

Console.WriteLine("{0} ({2}): {1}",
line cnt++, text line, text line.Length);
The same position value can appear multiple times as well—for example,
Console.WritelLine("Hello, {0}! Everyone, please welcome {0}",
user name) ;

We can control numeric formatting of the built-in types through the addition of format
characters. For example, a C interprets the value in terms of the local currency, F indicates
a fixed-point format, E indicates an exponential (scientific) format, and G leaves it to the
system to pick the most compact form. Each may be followed by a value specifying the
precision. For example, given the object

double d = 10850.795;

the Writeline () statement

Console.WriteLine ("{0} : {0:C2} : {0:F4} : {0:E2} : {0:G}",d);

generates the following output:

10850.795 : $10,850.80 : 10850.7950 : 1.09E+004 : 10850.795

We can use X or x to output the value in hexadecimal. X results in the uppercase values A
through F; x results in lowercase a through f.

1.7 The string Type

Once we have read a line of text, we need to separate it into the individual words. The
simplest method of doing that is to use the Split () method of string—for example,

string text line;
string [] text words;

while ((text line = freader.ReadLine()) != null)

{
text words = text line.Split(null);
//

Split () returns an array of string elements separated by a set of characters indicated by
the user. If Split () is passed null, as it is in our example, it separates the elements of
the original string using white space, such as a blank character or a tab. For example, the
string

A beautiful fiery bird, he tells her, magical but untamed.

is split into an array of 10 string elements. Three of them, however—bird, her, and
untamed—retain their adjacent punctuation. One strategy for removing the punctuation is
to provide Split () with an explicit array of characters with which to separate the string—
for example,

char [] separators = {
', "\n', "\t', // white space
l.l’ l\"l, l,.l, l,l, l?l, I!l, ')l, l(l, l<|’ I>l, |[l, IJI

b

text words = text line.Split(separators);

A character literal is placed within single quotation marks. The new-line and tab characters
are represented by the two-character escape sequences \n and \t. Each sequence
represents a single character. The double quotation mark must also be escaped (\") in
order for it to be interpreted as a character rather than the beginning of a string literal.

The string type supports the subscript operator ([])—but for read operations only.
Indexing begins at zero, and extends to Length-1 characters—for example,

for (int ix = 0; ix < text line.Length; ++ix)

if (text line[ix] == '.') // OK: read access

text line[ix] ="' _'; // error: no write access

The string type does not support use of the foreach loop to iterate across the
characters of its string.2 The reason is the somewhat nonintuitive immutable aspect of a
string object. Before we make sense of what that means, let me briefly make sense of the
C# for loop statement.

71 The technical reason is that the String class does not implement the IEnumerable interface. See Chapter 4 for a
full discussion of the TEnumerable interface and interfaces in general.

The for loop consists of the following elements:
for (init-statement; condition; expression)
statement

init-statement is executed once before the loop is executed. In our example, ix is
initialized to 0 before the loop begins executing.

condition serves as the loop control. It is evaluated before each iteration of the loop. For
as many iterations as condition evaluates as true, statement is executed. statement
can be either a single statement or a statement block. If condition evaluates to false on
the first iteration, statement is never executed. In our example, condition tests
whether ix is less than text line.Length—thatis, the count of the number of
characters contained within the string. While ix continues to index a valid character
element, the loop continues to execute.

expression is evaluated after each iteration of the loop. It is typically used to modify the
objects initialized within init-statement and tested in condition. If condition
evaluates to false on the first iteration, expression is never executed. In our example,
ix is incremented following each loop iteration.

The reason we cannot write to the individual characters of the underlying string literal is
that string objects are treated as immutable. Whenever it seems as if we are changing the
value of a string object, what has actually happened is that a new string object containing
those changes has been created.

For example, to do an accurate occurrence count of words within a text file, we'll want to
recognize A and a as being the same word. One way to do that is to change each string to
all lowercase before we store it:

while ((text line = freader.ReadLine()) != null)
{
// oops: this doesn't work as we intended
text line.ToLower();
text words = text line.Split(null);

//

ToLower () correctly changes all uppercase characters within text line to lowercase.
(There is a ToUpper () member function as well.) The problem is that the new
representation is stored in a new string object that is returned by the call to ToLower ().
Because we do not assign the new string object to anything, it's just tossed away.

text line is not changed, and it won't change unless we reassign the return value to it,
as shown here:

text line = text line.ToLower();

To minimize the number of new string objects generated when we are making multiple
modifications to a string, we use the StringBuilder class. See section 4.9 for an
illustration.

1.8 Local Objects

A data object must be defined within either a function or a class; it cannot exist as an
independent object either in a namespace or within the global declaration space. Objects

that are defined within a function are called local objects. A local object comes into
existence when its enclosing function begins execution. It ceases to exist when the
function terminates. A local object is not provided with a default initial value.

Before a local object can be read or written to, the compiler must feel sure that the object
has been assigned to. The simplest way to reassure the compiler is to initialize the local
object when we define it—for example,

int ival = 1024;

This statement defines an integer object ival and initializes it with a value of 1024.

iSometimes it doesn't make sense to initialize an object because we don't use it until after
it has the target of an assignment. For example, consider user name in the following

program fragment:

static int Main ()

{

string user name;

int num_tries = 0;

const int max tries = 4;

while (num tries < max tries)

{

// generate user message

++num_tries;
user name = Console.ReadLine();

// test whether entry is valid
}

// compiler error here!

// use of unassigned local variable user name
Console.WriteLine("Hello, {0}", user name);
return 0;

By inspection, we see that user name must always be assigned to within the while loop.
We know this because num_tries is initialized to 0. The while loop is always evaluated

at least once. The compiler, however, flags the use of user name in the WriteLine ()
statement as the illegal use of an unassigned local object. What do we know that it doesn't?

Each time we access a local object, the compiler checks that the object has been definitely
assigned to. It determines this through static flow analysis—that is, an analysis of what it
can know at compile time. The compiler cannot know the value of a nonconstant object,
such as num_tries, even if its value is painfully obvious to us. The static flow analysis
carried out by the compiler assumes that a nonconstant object can potentially hold any
value. Under that assumption, the while loop is not guaranteed to execute. Therefore,
user name is not guaranteed to be assigned to, and the compiler thus issues the error

message.

The compiler can fully evaluate only constant expressions, such as the literal values 7 or
'c', and nonwritable constant objects, such as max tries. Nonconstant objects and
expressions can be definitely known only during runtime. This is why the compile treats all
nonconstants as potentially holding any value. It's the most conservative and therefore
safest approach.

One fix to our program, of course, is to provide a throwaway initial value:

string user name = null;

An alternative solution is to use the fourth of our available loop statements in C#, the do-
while loop statement. The do-while loop always executes its loop body at least once
before evaluating a condition. If we rewrite our program to use the do-while loop, even
the compiler can recognize that user name is guaranteed to be assigned because its
assignment is independent of the value of the nonconstant num tries:

do
{
// generate user message
++num_tries;
user name = Console.ReadLine();
// test whether entry is valid
} while (num tries < max tries);

Local objects are treated differently from other objects in that their use is order dependent.
A local object cannot be used until it has been declared. There is also a subtle extension to
the rule: Once a name has been used within a local scope, it is an error to change the
meaning of that use by introducing a new declaration of that name. Let's look at an
example.

public class EntryPoint
{

private string str = "hello, field";
public void local member ()

{
// OK: refers to the private member

/* 1 */ str = "set locally";

// error: This declaration changes the
// meaning of the previous statement
/* 2 */ string str = "hello, local";

At 1, the assignment of str is resolved to the private member of the class EntryPoint.
At 2, however, the meaning of str changes with the declaration of a local str string
object. C# does not allow this sort of change in the meaning of a local identifier. The
occurrence of the local definition of str triggers a compile-time error.

What if we move the declaration of the private str data member so that it occurs after the
definition of the method? That doesn't change the behavior. The entire class definition is

inspected before the body of each member function is evaluated. The name and type of
each class member are recorded within the class declaration space for subsequent lookup.
The order of member declarations is not significant—for example,

public class EntryPoint

{
// OK: let's place this first
public void local member ()

{
// still refers to the private class member
/* 1 */ str = "set locally";
// still the same error
/* 2 */ string str = "hello, local";
}

// position of member does not change its visibility
private string str = "hello, field";

Each local block maintains a declaration space. Names declared within the local block are
not visible outside of it. The names are visible, however, within any blocks nested with the
containing block—for example,

public void example ()
{ // top-level local declaration space
int ival = 1024;

// ival is still in scope here

double ival = 3.14; // error: reuse of name
string str = "hello";

// ival still in scope, str is not!
double str = 3.14159; // OK
}

// what would happen if we defined a str object here?

If we added a local declaration of str at the end of the function, what would happen?
Because this declaration occurs at the top-level local declaration space, the two previous
legal uses of the identifier str within the local nested blocks would be invalidated, and a
compiler error would be generated.

Why is there such strict enforcement against multiple uses of a nhame within the local
declaration spaces? In part because local declaration spaces are considered under the
ownership of the programmer. That is, the enforcement of a strict policy is not considered
onerous for the programmer. She can quickly go in and locally modify one or another of
the identifiers. And by doing so, the thinking goes, she is improving the clarity of her
program.

1.9 Value and Reference Types

Types in C# are categorized as either value or reference types. The behavior when copying
or modifying objects of these types is very different.

An object of a value type stores its associated data directly within itself. Any changes to
that data does not affect any other object. For example, the predefined arithmetic types,
such as int and double, are value types. When we write

double pi = 3.14159;

the value 3.14159 is directly stored within pi.

When we initialize or assign one value type with another, the data contained in the one is
copied to the second. The two objects remain independent.

For example, when we write

double shortPi = pi;

although both pi and shortPi now hold the same value, the values are distinct instances
contained in independent objects. We call this a deep copy.

If we change the value stored by shortPi,

shortPi = 3.14;

the value of pi remains unchanged. Although this may seem obvious—perhaps to the
point of tedium—this is not what happens when we copy and modify reference types!

A reference type is separated into two parts:

1. A named handle that we manipulate directly.
An unnamed object of the handle's type stored on what is referred to as the
managed heap. This object must be created with the new expression (see section
1.11 for a discussion).

The handle either holds the address of an object on the heap or is set to null; thatis, it
currently refers to no object. When we initialize or assign one reference type to another,
only the address stored within the handle is copied.

Both instances of the reference type now refer to the same object on the heap.
Modifications made to the object through either instance are visible to both. We call this a

shallow copy.

All class definitions are treated as reference types. For example, when we write

class Point

float x, vy’
//
}

Point origin;

Point is a reference type, and origin reflects reference behavior.

A struct definition allows us to introduce a user-defined value type. For example, when

we write

struct Point

{
float x, vy;

//
}

Point origin;

Point is now a value type, and origin reflects value behavior. In terms of performance,
a value type is generally more efficient, at least for small, heavily used objects. We look at
this topic in more detail in section 2.19.

The predefined C# array is a reference type. The discussion of the array in the next
section should clarify reference type behavior.

1.10 The C# Array

The built-in array in C# is a fixed-size container holding elements of a single type. When
we declare an array object, however, the actual size of the array is not part of its
declaration. In fact, providing an explicit size generates a compile-time error—for example,

string [] text; // OK
string [10] text; // error

We declare a multidimensional array by marking each additional dimension with a comma,
as follows:

string [,] two _dimensions;
string [,,] three dimensions;
string [,,,] four dimensions;

When we write

string [] messages;

messages represents a handle to an array object of string elements, but it is not itself the
array object. By default, messages is set to null. Before we can store elements within

the array, we have to create the array object using the new expression. This is where we
indicate the size of the array:

messages = new string[4];

messages now refers to an array of four string elements, accessed through index O for the
first element, 1 for the second, and so on:

messages|[0O] = "Hi. Please enter your name: ";

messages|[1] = "Oops. Invalid name. Please try again: ";
//

messages|[3] = "Well, that's enough. Bailing out!";

An attempt to access an undefined element, such as the following indexing of an undefined
fifth element for our messages array:

messages[4] = "Well, OK: one more try";;
results in a runtime exception being thrown rather than a compile-time error:
Exception occurred: System.IndexOutOfRangeException:

An exception of type
System.IndexOutOfRangeException was thrown.

1.11 The new Expression

We use the new expression to allocate either a single object:

Hello myProg = new Hello(); // () are necessary

or an array of objects:

messages = new string[4];

on the program's managed heap.

The name of a type follows the keyword new, which is followed by either a pair of
parentheses (to indicate a single object) or a pair of brackets (to indicate an array object).
We look at the allocation of a single reference object in section 2.7 in the discussion of class
constructors. For the rest of this section, we focus on the allocation of an array.

Unless we specify an initial value for each array element, each element of the array object
is initialized to its default value. (The default value for numeric types is 0. For reference
types, the default value is null.) To provide initial values for an array, we specify a

comma-separated list of constant expressions within curly braces following the array
dimension:

string[] m message = new string[4]

{

"Hi. Please enter your name: ",
"Oops. Invalid name. Please try again: ",
"Hmm. Wrong again! Is there a problem? Please retry: ",

"Well, that's enough. Bailing out!",
b

int [] seq = new int([8]{ 1,1,2,3,5,8,13,21 };

The number of initial values must match the dimension length exactly. Too many or too
few is flagged as an error:

int [] 1ial;
ial = new int[128] { 1, 1 }; // error: too few
ial = new int[3]{ 1,1,2,3 }; // error: too many

We can leave the size of the dimension empty when providing an initialization list. The
dimension is then calculated based on the number of actual values:
ial = new int[]{ 1,1,2,3,5,8 }; // OK: 6 elements

A shorthand notation for declaring local array objects allows us to leave out the explicit call
to the new expression—for example,

string[] m message =

{

"Hi. Please enter your name: ",
"Oops. Invalid name. Please try again: ",
"Hmm. Wrong again! Is there a problem? Please retry: ",

"Well, that's enough. Bailing out!",
b

int [] seq = {1,1,2,3,5,8,13,21 };

Although string is a reference type, we don't allocate strings using the new expression.
Rather, we initialize them using value type syntax—for example,

// a string object initialized to literal Pooh
string winnie = "Pooh";

1.12 Garbage Collection

We do not explicitly delete objects allocated through the new expression. Rather, these
objects are cleaned up by garbage collection in the runtime environment. The garbage
collection algorithm recognizes when an object on the managed heap is no longer
referenced. That object is marked as available for collection.

When we allocate a reference type on the managed heap, such as the following array
object:

int [] fib =
new int[6]1{ 1,1,2,3,5,8 };

the heap object is recognized as having an active reference. In this example, the array
object is referred to by fib.

Now let's initialize a second array handle with the object referred to by fib:

int [] notfib = fib;

The result is a shallow copy. Rather than notfib addressing a separate array object with
its own copy of the six integer elements, notfib refers to the array object addressed by
fib.

If we modify an element of the array through notfib, as in

notfib [0] = 0;

that change is also visible through fib. If this sort of indirect modification (sometimes
called aliasing) is not acceptable, we must program a deep copy:

// allocate a separate array object
notfib = new int [6];

// copy the elements of fib into notfib
// beginning at element 0 of notfib
fib.CopyTo(notfib, 0);

notfib no longer addresses the same array object referred to by fib. If we now modify
an element of the array through notfib, the array referred to by fib is unaffected. This
is the semantic difference between a shallow copy and a deep copy.

If we now reassign fib to also address a new array object—for example, one that contains
the first 12 values of the Fibonacci sequence:

fib = new int[12]1{ 1,1,2,3,5,8,13,21,34,55,89,144 };

the array object previously referred to by fib no longer has an active reference. It may
now be marked for deletion—when and if the garbage collector becomes active.

1.13 Dynamic Arrays: The ArrayList Collection Class

As the lines of text are read from the file, I prefer to store them rather than process them
immediately. A string array would be the container of choice to do this, but the C# array is
a fixed-size container. The required size varies with each text file that is opened, so the C#
array is too inflexible.

The System.Collections namespace provides an ArrayList container class that
grows dynamically as we either insert or delete elements. For example, here is our earlier
read loop revised to add elements to the container:

using System.Collections;
private void readFile()

{
ArrayList m text = new ArrayList();
string text line;

while ((text line = m reader.ReadLine()) != null)
{
if (text line.Length == 0)
continue;

// insert the line at the back of the container

m text.Add(text line);
}
// let's see how many we actually added
Console.WriteLine("We inserted {0} lines", text.Count);

The simplest and most efficient way to insert a single element is to use the Add () function.
It inserts the new element at the back of the list:

text.Add(text line);

Count returns the number of elements held in the ArrayList object:

Console.WriteLine("We inserted {0} lines", text.Count);

Just as we do for all reference types, we create an ArrayList object on the managed
heap using the new expression:

ArraylList text = new ArrayList();

The elements of an ArrayList are stored in a chunk of contiguous memory. When that
memory becomes full, a larger chunk of contiguous memory has to be allocated (usually
twice the size) and the existing elements are copied into this new chunk. We call this
chunk the capacity of the ArrayList object.

The capacity of an ArrayList represents the total number of elements that can be added
before a new memory chunk needs to be allocated. The count of an ArrayList
represents the number of elements currently stored within the ArrayList object. By
default, an empty ArrayList object begins life with a capacity of 16 elements.

To override the default capacity, we pass in an alternative capacity when we create the
ArrayList object—for example,

ArraylList text = new ArrayList(newCapacity);

where newCapacity represents a reasoned integer value. Capacity returns the current
capacity of the ArrayList object:

Console.WritelLine ("Count {0} Capacity {1}",
text.Count, text.Capacity);

Once we've completed our element insertion, we can trim the capacity of the ArrayList
to the actual element count using the TrimToSize () method:

text.TrimToSize () ;

Trimming an ArrayList object does not restrict our ability to insert additional elements.
If we do, however, we once again increase the capacity.

1.14 The Unified Type System

When we define an object, we must specify its type. The type determines the kind of
values the object can hold and the permissible range of those values. For example, byte is
an unsigned integral type with a size of 8 bits. The definition

byte b;

declares that b can hold integral values, but that those values must be within the range of
0 to 255. If we attempt to assign b a floating-point value:

b = 3.14159; // compile-time error

a string value:

b = "no way"; // compile-time error

or an integer value outside its range:

b = 1024; // compile-time error

each of those assignments is flagged as a type error by the compiler. This is true of the C#
array type as well. So why is an ArrayList container able to hold objects of any type?

The reason is the unified type system. C# predefines a reference type named object.
Every reference and value type—both those predefined by the language and those
introduced by programmers like us—is a kind of object. This means that any type we
work with can be assigned to an instance of type object. For example, given

object o;

each of the following assignments is legal:

= 10;

"hello, object";
3.14159;

new int[24 1;
new WordCount () ;
= false;

O O O O O O
Il

We can assign any type to an ArrayList container because its elements are declared to
be of type object.

object provides a fistful of public member functions. The most frequently used method is
ToString (), which returns a string representation of the actual type—for example,

Console.WritelLine(o.ToString());
1.14.1 Shadow Boxing

Although it may not be immediately apparent, there is something very strange about
assigning an object type with an object of type int. The reason is that object is a
reference type, while int is a value type.

In case you don't remember, a reference type consists of two parts: the named handle
that we manipulate in our program, and an unnamed object allocated on the managed
heap by the new expression. When we initialize or assign one reference type with another,
the two handles now refer to the same unnamed object on the heap. This is the shallow
copy that was introduced earlier.

A value type is not represented as a handle/object pair. Rather the declared object directly
contains its data. A value type is not allocated on the managed heap. It is neither
reference-counted nor garbage-collected. Rather its lifetime is equivalent to the extent of
its containing environment. A local object's lifetime is the length of time that the function
in which it is defined is executing. A class member's lifetime is equal to the lifetime of the
class object to which it belongs.

The strangeness of assigning a value type to an object instance should seem a bit clearer
now. The object instance is a reference type. It represents a handle/object pair. A value
type just holds its value and is not stored on the heap. How can the handle of the object
instance refer to a value type?

Through an implicit conversion process called boxing, the compiler allocates a heap
address to assign to the object instance. When we assign a literal value or an object of a
value type to an object instance, the following steps take place: (1) an object box is
allocated on the heap to hold the value, (2) the value is copied into the box, and (3) the
object instance is assigned the heap address of the box.

1.14.2 Unboxing Leaves Us Downcast

There is not much we can do with an object except invoke one of its public member
functions. We cannot access any of the methods or properties of the original type. For
example, when we assign a string object to an object:

string s = "cat";
object o = s;

// error: string property Length is not available
// through the object instance
if (o.Length != 3)

all knowledge of its original type is unavailable to the compiler. If we wish to make use of
the Length property, we must first return the object back to a string. However, an
object is not automatically converted to another type:

// error: no implicit conversion of an object type
// to any other type

string str = o;

A conversion is carried out automatically only if it can be guaranteed to be safe. For the
compiler to determine that, it must know both the source and the target types. With an
object instance, all type information is absent—at least for the compiler. (The type and
environment information, however, is available both to the runtime environment and to us,
the programmers, during program execution. We look at accessing that information in

Chapter 8.)

For any conversion for which the compiler cannot guarantee safety, the user is required to
do an explicit type cast—for example,

string str = (string) o;

The explicit cast directs the compiler to perform the type conversion even though a
compile-time analysis suggests that it is potentially unsafe. What if the programmer is
wrong? Does this mean we have a hard bug to dig out?

Actually, no.

The full type information is available to the runtime environment, and if it turns out that o

really does not represent a string object, the type mismatch is recognized and a runtime
exception is thrown. So if the programmer is incorrect with an explicit cast, we have a bug,
but because of the automatic runtime check, not one that is difficult to track down.

Two operators can help us determine the correctness of our cast: is and as. We use the
is operator to ask if a reference type is actually a particular type—for example,

string str;

if (o is string)
str = (string) o;

The is operator is evaluated at runtime and returns true if the actual object is of the
particular type. This does not relieve us of the need for the explicit cast, however. The
compiler does not evaluate our program's logic.

Alternatively, we can use the as operator to perform the cast at runtime if the actual
object is of the particular type that interests us—for example,

string str = o as string;

If o is not of the appropriate type, the conversion is not applied and str is set to null. To
discover whether the downcast has been carried out, we test the target of the conversion:

if (str != null)
// OK: o does reference a string

In converting an object instance to a particular reference type, the only work required is
setting the handle to the object's heap address. Converting an object instance to a
particular value type requires a bit more work because an object of a value type directly
contains its data.

This additional work in converting a reference type back to a value type is called unboxing.
The data copied into the previously generated box is copied back into the object of the
target value type. The reference count of the associated box on the managed heap is
decremented by 1.

1.15 Jagged Arrays

Now that we've stored each line of text within an ArrayList container, we next want to
iterate across the elements, separating each line into an array of the separate words. We'll
need to store these arrays because they become fodder for the function implementing the
word count. But this storage proves something of a problem—or at least a puzzle. Problem
or puzzle, jagged arrays provide a solution.

If we are only reading the elements of the container, the foreach loop is the preferred
iteration method. It spares us the explicit cast of the object element to an object of its
actual type. Any other element assignment requires the cast:

for(int ix = 0; ix < text.Count; ++ix) {
string str = (string)text[ix];
//

}

// read-only access
foreach (string str in text){ ... }

Splitting one line of text into an array of its individual words is simple:

string [] words = str.Split(null);

The next part is also simple, but it is sometimes initially confusing. What we want to do is
store the collection of these arrays themselves in an array. That is, we want an array of
arrays.

The outer array represents the actual text. The array at the first index represents the first
line, at the second index the second line, and so on. An ordinary multidimensional array
cannot support what we want because it requires that both dimensions be fixed.

In our case, the first dimension is fixed—it's the number of lines in the text file—but the
second dimension varies with the number of words contained within each line of text. This
is the situation a jagged array addresses. Each of its array elements can be an individual
dimension. The syntax is an empty bracket pair for each dimension. For example, our
array of arrays is two-dimensional, so its declaration looks like this:

string [][] sentences;

We initialize the array in two steps. In the first step we allocate the first dimension. This is
the number of lines stored in the ArrayList object:

sentences = new string[text.Count][];

This statement says that sentences is an array of size text.Count that holds one-
dimensional arrays of string elements. That is exactly what we want.

Next we need to individually initialize each of these elements with the actual string array.

We'll do this by iterating across the ArrayList and assigning the resulting Split () of
each of its strings:

string str;

for(int ix = 0; 1ix < text.Count; ++ix)
{
str = (string)text[ix];
sentences|[ix] = str.Split(null);

The individual string arrays are accessed through the first dimension. For example, to print
out both the number of elements in the individual string arrays and the elements
themselves, we could write the following:

// returns length of first dimension

int diml length = sentences.GetLength(0);

Console.WriteLine("There are {0} arrays stored in sentences",
diml length);

for(int ix = 0; ix < diml length; ++ix)
{
Console.WriteLine("There are {0} words in array {1}",
sentences[ix].Length, ix+1);

foreach (string s in sentences[ix])
Console.Write("{0} ", s);

Console.WriteLine () ;

All the C# array types have access to the public members of the Array class defined in
the System namespace. GetLength (), illustrated here, is one such member. The
majority of the member functions, however, such as Sort (), Reverse (), and
BinarySearch (), support arrays of only one dimension.

1.16 The Hashtable Container

The System.Collections namespace provides a Hashtable container. A Hashtable
represents a key/value pair in which the key is used for fast lookup. In other languages,

we might call our table map or Dictionary. We'll use the Hashtable object to hold the
occurrence count of the individual words.

We'll use the word as the key. The occurrence count is the value. If the word is not yet
entered in the table, we add the pair, setting the occurrence count to 1. Otherwise, we use
the key to retrieve and increment the occurrence count. Here is what this looks like:

Hashtable words = new Hashtable() ;
int diml length = sentences.GetLength(0);

for(int ix = 0; ix < diml length; ++ix)
{

foreach (string st in sentences[ix])

{
// normalize each word to lowercase
string key = st.ToLower () ;

// is the word currently in Hashtable?
// if not, then we add it

if (! words.Contains(key))
words.Add (key, 1);

// otherwise, we increment the count
else
words[key] = (int) words[key] + 1;

To discover if a key is present in a Hashtable, we invoke its predicate Contains ()
method, which returns true if the entry is found. We add the key/value pair to a
Hashtable either by an explicit assignment:

words[key] = 1;

or through the Add () method:

words.Add (key, 1);

Typically, the key type is a string or one of the built-in numeric types. The value type,
which holds the actual data to be retrieved, is generally more application specific—often a
class implemented to support the problem domain. The Hashtable can support different
key and value types because it declares both its key and value members to be of type
object.

However, because Hashtable stores its value as an object type, we must explicitly cast
it back to its original type. For a value type, recall, this requires unboxing. Any
modification to the unboxed value is not automatically reflected in the stored instance, so
we must reset it:

words[key] = (int) words[key] + 1;

Keeping track of trivial words, such as a, an, if, but, and so on, may or may not be useful.
One strategy for eliminating these words from our occurrence count is to create a second
Hashtable of common words—for example,

Hashtable common words = new Hashtable();

common words.Add("the", 0);
common words.Add("but", 0);
//

common_words.Add("and", 0);

and to check each word against this table before entering it into our main table:

foreach (string st in sentences[ix])
{
string key = st.ToLower();
if (common words.Contains(key))
continue;

All that's left for the completion of our program is to print out the occurrence count of the
words to the output file in dictionary order. How do we do that?

Our first thought is to iterate across the Hashtable using a foreach loop. To do that, we
access each key/value pair in turn through a DictionaryEntry object, which provides a
Key and a Value pair of properties:

foreach (DictionaryEntry de in word)
fwriter.WriteLine("{0} : {1}", de.Key, de.Value);

As with many programming solutions, this both works and doesn't work. The good news is
that it prints out the word and occurrence count of each element. The bad news is that it
doesn't do so in dictionary order. For example, here are the first few entries:

lime-tinted : 1
waist : 1
bold : 1

The problem is that the key is inserted within the Hashtable based on the key's hash
value, and we cannot directly override that. One solution is to access the key values, place
them in a sortable container, and then sort and iterate over that container. For each now
sorted key, we retrieve the associated value:

Arraylist aKeys = new ArrayList(words.Keys);
aKeys.Sort () ;

foreach (string key in aKeys)
fwriter.WriteLine("{0} :: {1}", key, words[key 1);

This solves the final sticking point in our solution:

apron :: 1
around :: 1
blossoms :: 3

The IDictionary interface provides an abstract model for the storage and retrieval of
key/value pairs. (We look at interfaces in detail in chapter 4.) The Hashtable implements
this interface, in which both the key and the value are defined to be of type object. Several
strongly typed, specialized classes defined under System.Collections.Specialized
are also available. These include

e StringDictionary: a hash table with the key strongly typed to be a string
rather than an object. The key is treated as case insensitive.

e ListDictionary: an IDictionary implementation using a singly-linked list. If
the number of elements is ten or less, it is smaller and faster than a Hashtable.

e NameValueCollection: a sorted collection of string keys and string values.
These can be accessed through either a key hash or an index.
NameValueCollection stores multiple string values under a single key.

1.17 Exception Handling

That pretty much wraps up the WordCount program—at least in terms of its functionality.
The primary remaining issue is that of error detection. For example, what if the user has
specified a file that doesn't exist? Or what if the file is in a format we don't currently
support? Checking that is simple. To find out if a file exists, we can invoke the Exists ()
function of the File class, passing to it the string supplied to us by the user:

using System.IO;

if (! File. Exists(file name))
// oops

The harder part is choosing how to handle and/or report the problem. In the .NET
environment, the convention is to report all program anomalies through exception
handling. And that is what we will do.

Exception handling consists of two primary components: (1) the recognition and raising of
an exception through a throw expression and (2) the handling of the exception within a
catch clause. Here is a throw expression:

public StreamReader openFile(string file name)
{
if (file name == null)
throw new ArgumentNullException();

// reach here only if no ArgumentNullException thrown
if (! File.Exists(file name))
{
string msg = "Invalid file name: " + file name;
throw new ArgumentException(msg);

}

// reach here if file name not null and file exists

if (! file name.EndsWith(".txt"))
{
string msg = "Sorry. ";
string ext = Path.GetExtension(file name);
if (ext != String.Empty)
msg += "We currenly do not support " +

ext + " files."

msg = "\nCurrenly we only support .txt files.";
throw new Exception(msg);

}

// OK: here only if no exceptions thrown
return File.OpenText (file name);

The object of a throw expression is always an instance of the Exception class hierarchy.
(We look at inheritance and class hierarchies in our discussion of object-oriented
programming in chapter 3.) The Exception class is defined in the System namespace. It is
initialized with a string message identifying the nature of the exception. The
ArgumentException class represents a subtype of the Exception class. It more
precisely identifies the category of exception. The ArgumentNullException class is in
turn a subtype of ArgumentException. It is the most specific of these three exception
objects.

Once an exception has been thrown, normal program execution is suspended. The
exception-handling facility searches the method call chain in reverse order for a catch
clause capable of handling the exception.

We handle an exception by matching the type of the exception object using one or a series
of catch clauses. A catch clause consists of three parts: the keyword catch, the
declaration of the exception type within parentheses, and a set of statements within curly
braces that actually handle the exception.

catch clauses are associated with try blocks. A try block begins with the try keyword,
followed by a sequence of program statements enclosed within curly braces. The catch
clauses are positioned at the end of the try block. For example, consider the following
code sequence:

StreamReader freader = openFile(fname);
string textline;

while ((textline = freader.ReadLine()) != null)

We know that openFile () throws three possible exceptions. ReadLine () throws one
exception, that of the TOException class. As written, this code does not handle any of
those four exceptions. To correct that, we place the code inside a try block and associate
the relevant set of catch clauses:

try

StreamReader freader = openFile(fname);
string textline;

while ((textline = freader.ReadLine()) != null)

{
// do the work here

}

catch (IOException ioe)

{ ..}

catch (ArgumentNullException ane)

{ ...}

catch (ArgumentException ae)

{ ..}

catch (Exception e)

{ ...}

What happens when an exception is thrown? The exception-handling mechanism looks at
the site of the throw expression and asks, "Has this occurred within a try block?" If it has,
the type of the exception object is compared against the exception type declaration of

each associated catch clause in turn. If the types match, the body of the catch clause is
executed.

This represents a complete handling of the exception, and normal program execution
resumes. If the catch clause does not specify a return statement, execution begins
again at the first statement following the set of catch clauses. Execution does not resume
at the point where the exception was thrown.

What if the type of the exception object does not match one of the catch clauses or if the
code does not occur within a try block? The currently executing function is terminated,
and the exception-handling mechanism resumes its search within the function that invoked
the function just terminated.

If one of the three if statements of openFile () throws an exception, the assignment of
freader and the remainder of the try block are not executed. Rather the exception-
handling mechanism assumes program control, examining each associated catch clause
in turn, trying to match the exception type.

What if the chain of function calls is unwound to the Main () program entry point, and still
no appropriate catch clause is found? The program itself is then terminated. The
unhandled exception is propagated to the runtime debugger. The user can either debug
the program or let it prematurely terminate.

In addition to a set of catch clauses, we can place a finally block after the last catch
clause. The code associated with the finally block is always executed before the
function exits:

e If an exception is handled, first the catch clause and then the finally clause is
executed before normal program execution resumes.

e If an exception occurs but there is no matching catch clause, the finally clause
is executed; the remainder of the function is discarded.

e If no exception occurs, the function terminates normally. The finally clause is
executed following the last non-return statement of the function.

The primary use of the finally block is to reduce code duplication due to differing
exception/no-exception exit points that need to execute the same code.

1.18 A Basic Language Handbook for C#

The three things left undone for a complete implementation of our WordCount application
are (1) to illustrate how to implement the timing diagnostics, (2) to show how to
conditionally output tracing statements, and (3) to package our code into the WordCount
class. This last item is so important that it deserves its own chapter—chapter 2 to be exact.

We look at how to generate the tracing output in section 5.5.2 in the discussion of the
TraceListener class hierarchy. The timing support is presented in section 8.6.3 in the
discussion of interoperability with the Win32 API. The remainder of this section provides a
brief handbook of the C# basic language in the form of a set of tables with brief
commentary.

1.18.1 Keywords

Keywords are identifiers reserved by the language. They represent concepts or facilities of
the basic C# language. abstract, virtual, and override, for example, specify
different categories of dynamic functions that support object-oriented programming.

delegate, class, interface, enum, event, and struct represent a variety of

complex types that we can define. The full set of keywords is listed in Table 1.1.

Table 1.1. The C# Keywords

abstract |as base bool break
byte case catch char checked
class const continue decimal default
delegate |do double else enum
event explicit |extern false finally
fixed float for foreach goto

if implicit |in int interface
internal |is lock long namespace
new null object operator out
override |params private protected public
readonly ref return sbyte sealed
short sizeof stackalloc |static string
struct switch this throw true

try typeof uint ulong unchecked
unsafe ushort using virtual void
while

A name cannot begin with a number. For example, 1 name is illegal but name 1 is OK. A
name must also not match a language keyword, with the one proverbial exception: We can
reuse a C# keyword name by prefixing it with @—for example,

class @class

{
static void @static(bool @bool)

{

if (@bool)
Console.WriteLine ("true");
else Console.WriteLine("false");

}
}

class Classl

{

static void M { @class.@static(true); }

}

This prefix option may prove useful in interfacing with other languages, in particular when
a C# keyword is used as an identifier in the other programming language. (The @
character is not part of the identifier. Rather it provides a context for interpreting the
keyword as an identifier.)

1.18.2 Built-in Numeric Types

Integral literals, such as 42 and 1024, are of type int. To indicate an unsigned literal
value, the lower- or uppercase letter U is added as a suffix—for example, 42u, 1024U. To
indicate a literal value of type 1ong, we add a lower- or uppercase L as a suffix—for
example, 421, 10241. (For readability, the upper case L is the preferred usage.) To
specify a literal value that is both unsigned and long, we combine the two suffixes—for
example, 42UL, 1024LU.

The sizes (whether the value is signed or unsigned) determine the range of values a type
can hold. A signed byte, for example, holds the range -128 through 127, an unsigned
byte the range 0 through 255, and so on.

However, using types smaller than int can be nonintuitive in some circumstances, and I
find myself avoiding them except occasionally as class members. For example, the code
sequence

sbyte sl = 0;
sl = sl + 1; // error!

is flagged as an error with the following message:

Cannot implicitly convert type 'int' to 'byte'

The rule is that the built-in numeric types are implicitly converted to a type as large as or
larger. So int is implicitly promoted to double. But any conversion from a larger to a
smaller type requires an explicit user conversion. For example, the compiler does not
implicitly allow the conversion of double to int. That conversion must be explicit:

sl = (sbyte) (sl + 1); // OK

Why, though, you might ask, is a conversion necessary when s1 is simply being
incremented by 1? In C#, integral operations are carried out minimally through signed 32-
bit precision values. This means that an arithmetic use of s1 results in a promotion of its
value to int. When we mix operands of different types, the two are promoted to the
smallest common type. For example, the type of the result of s1+1 is int.

When we assign a value to an object, as with our assignment of s1 here, the type of the
right-hand value must match the type of the object. If the two types do not match, the
right-hand value must be converted to the object's type or the assignment is flagged as an
error.

By default, a floating-point literal constant, such as 3.14, is treated as type double.
Adding a lower- or uppercase F as a suffix to the value turns it into a single-precision
float value. Character literals, such as 'a', are placed within single quotes. Decimal
literals are given a suffix of a lower- or uppercase M. (The decimal type is probably
unfamiliar to most readers; section 4.3.1 looks at it in more detail.) Table 1.2 lists the built-in
numeric types.

Table 1.2. The C# Numeric Types
Keyword Type Usage
sbyte Signed 8-bit int ~ |sbyte sb = 42;
short Signed 16-bit int |short sv = 42;

int Signed 32-bit int |int iv = 42;
|Ong S|gned 64-bit int long 1lv = 42, 1v2 = 42L, 1v3 = 421;
byte Unsigned 8-bit int pyte bv = 42, bv2 = 42U, bv3 = 42u;
ushort Unsigned 16-bit jushort us = 42;
int
uint Unsigned 32-bit |uint ul = 42;
int
long Unsigned 64-bit wlong ul =42, ul2 =dul, ul3 =
H 4UL;
int
float Single-precision float fl = 3.14f, f£3 = 3.14F;
double |Double-precision |double d = 3.14;
bool Boolean bool bl = true, b2 = false;
char Unicode char char cl = 'e', c2 = '\0';
decimal |Decimal decimal dl = 3.14M, d2 = Tm;

The keywords for the C# predefined types are aliases for types defined within the System
namespace. For example, int is represented under .NET by the System.Int32 type, and
float by the System.Single type.

This underlying representation of the prebuilt types within C# is the same set of
programmed types as for all other .NET languages. This means that although the simple
types can be manipulated simply as values, we can also program them as class types with
a well-defined public set of methods. It also makes combining our code with other .NET
languages considerably more direct. One benefit is that we do not have to translate or
modify types in order to have them recognized in the other language. A second benefit is
that we can directly reference or extend types built in a different .NET language. The
underlying System types are listed in Table 1.3.

Table 1.3. The Underlying System Types
C# Type System Type C# Type System Type

sbyte System.SByte byte System.Byte
short System.Int16 ushort System.UInt16
int System.Int32 uint System.UInt32
long System.Int64 ulong System.UInt64
float System.Single double System.Double
char System.Char bool System.Boolean
decimal System.Decimal

object System.Object string System.String

1.18.3 Arithmetic, Relational, and Conditional Operators

C# predefines a collection of arithmetic, relational, and conditional operators that can be
applied to the built-in numeric types. The arithmetic operators are listed in Table 1.4,
together with examples of their use; the relational operators are listed in Table 1.5, and the
conditional operators in Table 1.6.

The binary numeric operators accept only operands of the same type. If an expression is
made up of mixed operands, the types are implicitly promoted to the smallest common
type. For example, the addition of a double and an int results in the promotion of the
int to double. The double addition operator is then executed. The addition of an int
and an unsigned int results in both operands being promoted to 1ong and execution of
the 1ong addition operator.

Table 1.4. The C# Arithmetic Operators

Operator Description Usage
* Multiplication exprl * expr2;
/ Division exprl / expr2;
5 Remainder exprl % expr2;
+ Addition exprl + expr2;
- Subtraction exprl - expr2;
++ Increment by 1 ++exprl; expr2++;
-= Decrement by 1 -—exprl; expr2--;

The division of two integer values yields a whole number. Any remainder is truncated;
there is no rounding. The remainder is accessed by the remainder operator (%):

% 3 evaluates to 2
4 evaluates to 1
5

evaluates to 0

/ 3 evaluates to 1, while 5
/ 4 evaluates to 1, while 5
/5 , 5

o

o oo

o
°

evaluates to 1, while

Integral arithmetic can occur in either a checked or unchecked context. In a checked
context, if the result of an operation is outside the range of the target type, an
OverflowException is thrown. In an unchecked context, no error is reported.

Floating-point operations never throw exceptions. A division by zero, for example, results
in either negative or positive infinity. Other invalid floating-point operations result in NAN
(not a number).

The relational operators evaluate to the Boolean values false or true. We cannot mix
operands of type bool and the arithmetic types, so relational operators do not support
concatenation. For example, given three variables—a, b, and c—that are of type int, the
compound inequality expression

// illegal
a !=b != c;

is illegal because the int value of c is compared for inequality with the Boolean result of
a !'= b.

Table 1.5. The C# Relational Operators

Operator Description Usage
< Less than exprl < expr2;
> Greater than exprl > expr2;
<= Less than or equal to exprl <= expr2;
>= Greater than or equal to exprl >= expr2;
== Equality exprl == expr2;
I= Inequality exprl != expr2;
Table 1.6. The C# Conditional Operators

Op Description Usage
! Logical NOT ! exprl
| | |Logical OR (short circuit) exprl || expr2;
&& |Logical AND (short circuit) exprl && expr2;
| |Logical OR (bool)—evaluate both booll | boolZ2Z;

sides
& |Logical AND (bool) —evaluate booll & bool2;

both sides
?: Conditional cond expr ? exprl :

exprz;

The conditional operator takes the following general form:

expr
? execute if expr is true
: execute if expr is false;

If expr evaluates to true, the expression following the question mark is evaluated. If
expr evaluates to false, the expression following the colon is evaluated. Both branches
must evaluate to the same type. Here is how we might use the conditional operator to
print either a space or a comma followed by a space, depending on whether last elemis

true:

Console.Write(last elem 2 ™ "™ : ", ")

Because the result of an assignment operator (=) is the value assigned, we can
concatenate multiple assignments. For example, the following assigns 1024 to both the
vall and the val2 objects:

// sets both to 1024
vall = val2 = 1024;

Compound assignment operators provide a shorthand notation for applying arithmetic
operations when the object to be assigned is also being operated upon. For example,
rather than writing

cnt = cnt + 2;

we typically write

// add 2 to the current value of cnt
cnt += 2;

A compound assignment operator is associated with each arithmetic operator:

When an object is being added to or subtracted from by 1, the C# programmer uses the
increment and decrement operators:

cnt++; // add 1 to the current value of cnt
cnt--; // subtract 1 from the current value of cnt

Both operators have prefix and postfix versions. The prefix version returns the value after
the operation. The postfix version returns the value before the operation. The value of the
object is the same with either the prefix or the postfix version. The return value, however,
is different.

1.18.4 Operator Precedence

There is one "gotcha" to the use of the built-in operators: When multiple operators are
combined in a single expression, the order in which the expressions are evaluated is
determined by a predefined precedence level for each operator. For example, the result of
5+2*10 is always 25 and never 70 because the multiplication operator has a higher
precedence level than that of addition; as a result, in this expression 2 is always multiplied
by 10 before the addition of 5.

We can override the built-in precedence level by placing parentheses around the operators
we wish to be evaluated first. For example, (5+2) *10 evaluates to 70.

Here is the precedence order for the more common operators; each operator has a higher
precedence than the operators under it. Operators on the same line have equal precedence.
In the case of equal precedence, the order of evaluation is left to right:

Logical NOT (!)

Arithmetic *, /, and %
Arithmetic + and -
Relational <, >, <=, and >=
Relational == and !=
Logical AND (&& and &)

Logical OR (

[l and [)
Assignment (=)

For example, consider the following statement:

if (textline = Console.ReadLine() != null) ... // error!

Our intention is to test whether textline is assigned an actual string or null.
Unfortunately, the higher precedence of the inequality operator over that of the
assignment operator causes a quite different evaluation. The subexpression

Console.ReadLine () != null

is evaluated first and results in either a true or false value. An attempt is then made to
assign that Boolean value to textline. This is an error because there is no implicit
conversion from bool to string.

To evaluate this expression correctly, we must make the evaluation order explicit by using
parentheses:

if ((textline = Console.ReadLine()) != null) ... // OK!

1.18.5 Statements

C# supports four loop statements: while, for, foreach, and do-while. In addition, C#
supports the conditional i f and switch statements. These are all detailed in Tables 1.7, 1.8,
and ..

Table 1.7. The C# Loop Statements

Statement Usage
while while (ix < size){
iarray[ix 1 = ix;
ix++;
}
for for (int ix = 0; ix<size; ++ix)
iarray[ix] = ix;
foreach foreach (int val in iarray)
Console.WriteLine(val);
do-while int ix = 0;
do
{
iarrayl ix] = ix;
++ix;
}
while (ix < size);

Table 1.8. The C# Conditional i f Statements
Statement Usage

1if if (usr _rsp=='N' || usr rsp=='n'")
go_for it = false;

if (usr_guess == next elem)
{ // begins statement block
num right++;
got it = true;
} // ends statement block

if-else if (num tries ==)
Console.WriteLine(" ... ");
else
if (num tries ==)
Console.WriteLine("™ ... ");
else
if (num tries ==)
Console.WriteLine(" ... ");
else Console.WriteLine(" ... ");
Table 1.9. The C# switch Statements
Statement Usage
switch // equivalent to if-else-if clauses above

switch (num tries)
{
case 1:
Console.WriteLine(" ... ");
break;

case 2:
Console.WriteLine("™ ... ");
break;

case 3:
Console.WriteLine("™ ... ");
break;

default:
Console.WriteLine(" ... ");
break;

}

// can use string as well
switch (user response)

{
case "yes":
// do something
goto case "maybe";

case "no":
// do something
goto case "maybe";

case "maybe":
// do something
break;

default:
// do something;
break;

Chapter 2. Class Design

A class represents an abstraction, usually of our application domain. In computer graphics,
for example, we manipulate classes representing lights, a camera, geometric shapes such
as a sphere, cone, or cube, as well as curves and surfaces, and math classes such as
matrices and vectors. In the design of a Windows application, we manipulate classes

representing text boxes, buttons, labels, message boxes, and so on. The primary goal of
this chapter is to familiarize you with the C# language support for designing and
implementing classes.

In general, a class consists of two parts: a public set of operations and properties—called
the public interface—and a private implementation. As users of a class, we are consumers
of its public interface. For example, as users we know that to retrieve the number of
elements currently held within an ArrayList object, we access its Count property. That's
the public interface. Whether that value is stored as a data member or calculated on
demand and cached is an implementation detail that is hidden from us as users. A
secondary goal of this chapter is to look at how we separate interface and implementation
in the design of our classes.

2.1 Our First Independent Class

A class may represent an independent abstraction, or it may represent a specialization of a
more general abstraction. For example, FileStream and MemoryStream are both
specialized class definitions of the System. IO namespace Stream class. A stream
represents a general flow of data either into or out of our program. It is an abstract class
because although it defines the behavior of a stream (the public interface); it does not
provide a complete implementation. The completion of the stream implementation is left to
the more specialized file and memory stream classes, which define the input/output
medium. Both the file and the memory stream classes are called subtypes of the stream
class type. This type/subtype relationship is at the heart of object-oriented programming
(OOP). We look at OOP in detail in chapter 3.

Before we define relationships between classes, we first need to feel comfortable in
building them. That's what we'll do in this chapter: look at how to make independent
classes. An independent class is one that provides a complete implementation of its
functionality. Examples of independent abstractions include the DateTime and Buffer
classes in the System namespace.

In chapter 1 we worked through the general implementation of a program to count the words
in a file. In this section we need to turn that work into the design of a WordCount class.

Where do we start?

The first thing we need to do is identify the set of operations that the class performs.
These become the class member functions. One can always argue whether two or more
functions should be combined, or whether a function should be factored into multiple
functions. In general, however, a function is best organized to perform a single task. For
the WordCount class, I have identified the following four operations:

1. openFiles (), which confirms the validity of the text file supplied by the user and
if valid, it opens it. In addition, it opens the output file to hold the word count.
Optionally it opens a file to hold the trace output.

2. readFile (), which reads the text, tucking it away for subsequent manipulation.

3. countWords (), which separates the text into individual words and computes the
occurrence count.

4. writeWords (), which outputs the occurrence count of the words into the
designated file in dictionary order.

In addition, there is an initialization task when we first create a WordCount class object,
and a deinitialization task when the object is no longer needed. We'll look at the issues
surrounding these operations in separate sections.

Once we have decided on the set of member functions, we need to identify the interface
for each. For a member function, an interface consists of (1) the return type of the
function and (2) the function parameter list, or signature.

A parameter list allows us to pass objects into a function. These parameters either are
operated on or provide information that is extracted from within the function. The return
type specifies the kind of object being passed back from the function. This object usually
represents the result of the internal computation, although it may also represent the
success/failure status of the operation. (Remember that in C# (and .NET programming in
general), the convention is to throw an exception rather than to return a status code such
as HRESULT.)

In the design of class member functions, we can often dispense with both an explicit return
value and the set of parameters. This is possible because a class object can maintain its
own state through class data members. Rather than passing in or returning values, a
member function can operate on the internal members of the class object through which it
is invoked. This often makes for a simpler programming model.

Once we have decided on the name, return type, and signature of the member functions,
we next have to decide on an access level for each. That is, should a function be declared
public, making it accessible to the entire program, or should it be declared private, in
which case only the other member functions of the class can invoke it? (Object-oriented
programming introduces a protected access level; we look at that in chapter 3.)

At first glance it seems that each of our member functions should be declared public,
allowing the user to—in any order—open, read, count, and write through the WordCount
object. To allow this flexibility, however, would complicate our implementation because the
invocation order of the methods is dependent. For example, it is hardly useful for a user to
request a count of the words if a file has not even been opened yet. An alternative
strategy is to package an invocation of the entire sequence in a single public function,
which for this example I've named processFile (). The four member functions that it
invokes in turn are declared private.

Let's see what we have so far. Here is a first iteration of a WordCount class definition:

using System;
public class WordCount

{

public void processFile ()

openFiles () ;
readFile();

countWords () ;
writeWords () ;

}

private void countWords ()

{

Console.WriteLine("!!! WordCount.countWords ()");

}

private void readFile ()

{

Console.WriteLine("!!! WordCount.readFile ()");

}

private void openFiles ()

{

Console.WriteLine("!!! WordCount.openFiles ()");

}

private void writeWords ()

{

Console.WriteLine("!!! WordCount.writeWords ()");

}

Member functions must be defined inside the class definition. The order of their declaration
is not significant. The compiler does not need to have seen the declaration of the member
function before it can be invoked. Each member function is provided with an explicit access
level. By default, if a member function (or class data member) does not have an explicit
access level, it is treated as a private member.

A class that is defined either within a namespace or within the global declaration space can
be declared as either private or internal. (Internal access means that the class is
visible only within the assembly in which it occurs. We look at assemblies in more detail in
chapter 8.) A class without an explicit access level is treated as having internal access.

Although this implementation of our class is not very functional, it is complete. Before we
proceed further with the implementation, it is probably useful to see that it compiles and
that we can invoke the public processFile () method successfully. I've always found
myself more productive when I incrementally add functionality to a working program
rather than when I wait until I have coded everything before seeing if any of it works.

To execute the program, we need to provide a program entry point. Here's a stripped-
down version that creates a WordCount object and invokes processFile ():

using System;
public class WordCountEntry
{

static public void Main ()

{

Console.WritelLine("Beginning WordCount program ... ");

WordCount theObj = new WordCount () ;

theObj.processFile();

Console.WritelLine ("Ending WordCount program ... ");

This class, together with the WordCount class, constitutes a complete C# program.

Before continuing with our exploration of the C# class mechanism, let's open a Visual
Studio project and execute the program.

2.2 Opening a New Visual Studio Project

For this program we want to create a C# project in Visual Studio using the Console
Application template. Assuming that you have brought the Visual Studio Start Page to
your screen (see Figure 2.1), click the New Project button. Under Project Types, click
Visual C# Projects. Under Templates, click Console Application. Change the name of
the project to WordCount. You can either leave the location at the default or choose
another directory in which to store your project. When done, click OK.

Figure 2.1. Visual Studio

By default the program file is named Classl.cs. It's probably better to rename it
something mnemonic, like word count.cs. You will always want to rename a project file
within Visual Studio. We do this within the Solution Explorer window. The lower right-
hand window in Figure 2.1, labeled 4, is the Solution Explorer window. It lists all the project
files. (In Figure 2.1 our file has already been renamed.) One way to navigate between the
different source files is to click on the file name within this window.

If you don't have the Solution Explorer window open, do that now by clicking on the
Solution Explorer icon identified by the tricolor Mobius strip. It's on the first toolbar on
the upper right portion of the screen (labeled 1 in Figure 2.1). Once the Solution Explorer
window is open, right-click on Classl.cs and select Rename.

Visual Studio generates a default namespace declaration and class skeleton. I always
delete those and start with an empty file. Type in the WordCount class defined in the
previous section. Notice that the compiler parses your code as you enter it, alerting you to
potential errors before you even build.

We also need to enter the WordCountEntry class. We'll place this part of our program in
a separate file. To add a new C# file, click on the Add New Item icon. (In Figure 2.1, it is at
the top left of the window, labeled 5.) Under Local Project Items, select C# Code File.

Give it the name EntryPoint.cs. When done, click Open.

To build our program and fix any errors reported by the compiler, we typically use the
Build command. (In Figure 2.1, it is the left-hand icon of the two that are labeled 6.) Errors
and warnings are reported in the bottom Visual Studio window. If you double-click on a
compiler error, the program text window displays the line on which the error occurs.

The open files are listed at the top of the program text window. Displayed on the line
below the open file names are the class currently being examined and the member of that
class upon which the curser is active. (In Figure 2.1, the open class is WordCount, and the

active member ism_reader.)

To hop around between classes or class members independently of the file in which they
are stored, we use the Class View window (labeled 3 in Figure 2.1). This window shows all
the classes in our project. Each class has its members listed below it. Clicking on a class or
class member brings the corresponding program text into view.

Now that the project builds without error, we'll want to execute it. Press Ctrl+F5 to
execute it without starting the debugger. (The icon is the exclamation point, the right-hand
icon of the two that are labeled 6 in Figure 2.1.) A console window should pop up, and the
WriteLine () output of the various functions should display.

2.3 Declaring Data Members

A data member represents state information associated with an instance of a class, such
as the name of a file or the capacity of an ArrayList. A class data member can be of any
type. How do we discover the data members that we need to associate with a class?

One category of data members is the set that users provide when they create a class
instance. For example, for our WordCount class, we require users to provide the name of
a text file and optionally to indicate whether they wish a program trace or performance
timings. It is likely that we'll need to store these values in associated class data members.

A second category of data members is the set of objects that are used across multiple
member functions. If an object is necessary within a single member function only, we
declare it as a local object to that function. However, if that object needs to be accessed
subsequently by another member function, it is likely that we'll want to store it as a class
data member.

For example, consider the following partial implementation of the readFile () member
function. It makes use of one local object and two class data members:

private void readFile()

{
m_text = new ArrayList();
string text line;

while ((text line = m reader.ReadLine())
!'= null)
{
if (text line.Length == 0)

continue;

m text.Add(text line);

text line is declared as a local object. It is used to temporarily store each line of text as
it is read from the text file specified by the user. Once the file has been read, we have no
further use for the object.

m reader and m text are declared as private data members. m reader refers to the
StreamReader object created in openFile (). m text is an ArrayList object holding
the nonempty lines of text. It is subsequently accessed within countWords ().

Here is a partial declaration of the WordCount data members:

public class WordCount

{

private bool m_spy;

private bool m_trace;
private string m file name;
private string m file output;

private StreamReader m_reader;

private StreamWriter m writer;
private ArrayList m_text;
private Hashtable m words;
private string [][] m_sentences;
//

Each data member must specify its own access level. A data member without an explicit
access level by default is treated as private. A private member, recall, can be
accessed only within the class for which it is a member. As a general design rule, our data
members are always declared as private.

2.4 Properties

Often the internal representation of a class is modified after its initial release to users. For
example, in this first version of WordCount, m_trace is declared as a bool data member;
that is, it is able to be set either to true or to false. For large text files, however, users
have found the generated trace text overwhelming—at least when generated to the
console. They have requested that we allow them to specify whether to direct the trace to
the console or to a file. Supporting this flexibility requires a change to the type
representation of m_trace. It must now be able to represent three states: traceOff,
toConsole, and toFile.

If m trace is declared as public, users are free to access it directly within their code. The
result is a tight coupling of the user's code with the class implementation—a tight coupling

that the class designer is unaware of, at least until she changes the class implementation
and the user discovers that his program is now broken.

Information hiding is the process of making the implementation details of a class
inaccessible to users. This mechanism provides a loose coupling between the user's code
and the class implementation, thereby enhancing the ability of the designer to modify the
class implementation without disrupting the user's program. We enforce information hiding
for class data members by declaring them as private.

Information hiding solves the problem of tight coupling. It also creates the problem of how
to allow users read or write access to a private data member. In C#, the solution is to
provide get and set accessors within a named class property—for example,

public class WordCount

{
// private data member declaration
private string m file output;

// associated public property
public string OutFile
{

get{ return m_file output; } // Read access
set
{ // Write access

if (value.Length != 0)

m file output = value;
}
//

A property typically is a public class member providing read and possibly write access to a
private data member of the class. We define a property by specifying an access level, type,
and property name. OutFile, for example, is a public property of type string.

If we wish the property to support read access, we provide a get accessor. It must return
a value of the property's type. The associated code is placed within a statement block. It
does not specify a return type or signature. At its simplest, a get accessor returns the
data member it encapsulates.

If we wish the property to support write access, we provide a set accessor. Within the
set accessor, the identifier value is always an object of the same type as its containing
property. At runtime, value is bound to the right-hand side of the assignment. At its
simplest, a set accessor assigns value to the data member it encapsulates.

The user accesses a property as if it were a data member rather than a function. For
example, in the code fragment

string defaultFile = @"c:\text\wordCount.txt";

if (theObj.OutFile == null)

theObj.OutFile = defaultFile;

the occurrence of OutFile within the condition of the if statement is replaced by the
body of the get accessor. The second occurrence of OutFile that is the target of the
assignment is replaced by the body of the set accessor. value is bound to the string
object defaultFile

If we wish to restrict a property to read-only access, we simply don't provide a set
accessor.

2.5 Indexers

An indexer provides support for arraylike indexing of a class object. An indexer looks like a
property. Like a property, an indexer provides a get and set pair of accessors. Unlike a
property, however, an indexer is identified using the this keyword rather than a name.
Indexers require at least one index parameter. The index can be of any type.

For example, imagine that users have requested the ability to retrieve the occurrence
count of a word using the following subscript syntax:

int count = theObj["fiery" 1;

How can we support that? The following indexer definition does the trick:

public class WordCount

{

private Hashtable m words;

// our indexer; it supports only read ...
public int this[string index]
{
get
{
if (index.Length ==)
throw new ArgumentException (
"WordCount: Empty string as index");

if (m_words == null)
throw new Exception (
"WordCount: No associated file");

return (int) m words[index];
}
//

We use the indexer by directly applying the subscript operator to an instance of the class.
In this example we do not provide a set accessor. The use of the subscript operator to
write to a WordCount object is flagged as a compile-time error—for example,

theObj["fiery"] = 1; // error: set not supported

The following indexer supports both read and write. It encapsulates a private array data

member:

public class Fibonacci

{

public decimal this[int index]

{

get
{
check index(index);
return ms_elems[index];
}
set
{
check index(index);
ms_elgms[index] = value;
}
}
private decimal [] ms elems;
private void check_inaex(int index) { ... }

The following example shows a two-dimensional indexer for a Matrix class. Although this
indexer takes two integer indices, multiple indices for an indexer do not need to be of the

same type:

public class Matrix

{

// not shown: constructors, methods

public int rows{ get{ return m row; }}
public int cols{ get{ return m col; }}

public double this[int row, int col]

{
get

{

check bounds (row,col) ;
return m mat[row,col];
set

check bounds (row,col) ;
m mat[row,col] = value;

private int m row;
private int m col;

private double [,] m mat;
private void check bounds(int r, int c) { ... }

This indexer can be used as follows:

Matrix mat = new Matrix(4, 4);

for (int ix = 0; 1x < mat.rows; ++ix)
for (int iy = 0; iy < mat.cols; ++iy);
if (mat[ix,iy] == 0)
mat[ix,iy] = ix+iy;

2.6 Member Initialization

Each class data member is automatically initialized to the default value of its type. Numeric
types, such as int and double, have a default value of 0. false is the default value of
type bool. null serves as the default value of all reference types. This default
initialization is carried out as part of the invocation of operator new.

If the default values are the appropriate initial member values, there is nothing additional
for us to program—at least in terms of initialization. Otherwise, how we assign an
alternative initial value depends on whether the class designer or class user designates
what that value should be.

If the class designer is the one determining the alternative initial value, she can explicitly
specify that value in the declaration of the class member—for example,

class Login

{
private string m password = "ChangeMe";
private int m max dirs 20;
private bool m save all true;
private string m login;

//

When we declare an instance of Login, only m login retains its default value of null.
The other three members have their default values reassigned to the explicit values
indicated in their definitions. These reassignments are carried out in the member
declaration order. m_password, for example, is initialized before m_max dirs, and
m_save all isinitialized last. The explicit value is not limited to a constant expression—
for example,

class Login
{
private ArrayList m history = new ArrayList();
private string [] m lib dirs = new string []
{
@"C:\ProgramFiles\Microsoft.Net\FrameworkSDK\Lib\",
@"C:\Platform SDK\Lib\",
@"C:\MSSDK\DXF\LIB"

The explicit-value declaration syntax allows the designer of the class to specify an explicit
value with which to assign a member. This is in addition to, not in place of, the
initialization of each class member with the default value of its type. The missing piece of
the initialization puzzle is the ability to let the user specify an initial value for a member at
the creation point of the class object. This is the service provided by the class constructor,
which we explore in the next section.

2.7 The Class Constructor

Our WordCount program requires that the user provide a file name. Optionally, the user
can turn on several options, such as generating trace output and timing diagnostics. The
Main () entry point processes the command-line options. That done, it must create a
WordCount object and pass the file name and possible options to that object before
asking the object to process the file.

One solution, of course, is to create a WordCount object with the default values and then
reset the values the user passed in through the command-line options. The problem with
this strategy is that it requires two steps, and the crucial second one is something that the
user might overlook.

The class constructor is a mechanism by which the user can provide values to assign to
data members during construction of the class object. For example, here is how we would
like to create a WordCount object:

WordCount theObj = new WordCount (file name, spyOn, traceOn);
theObj.processFile () ;

where file name, spyOn, and traceOn are set during the processing of the command-
line options.

The constructor associated with this invocation looks like this:

public WordCount(string file name, bool spy, traceFlags trace)

{

m file name = file name;
m_Spy = Spys
m trace = trace;
if (m_spy)
m_times = new ArrayList();

A constructor is a special member function of the class. We identify it as a constructor by
giving it the same name as its class. It cannot return a value, nor can it declare a return
type—not even a return type of void.

When the user creates a WordCount object through the operator new, the process is
broken down into two steps. In the first step, new allocates the heap memory to contain

the object. In the second step, the constructor initializes the object. The constructor is
automatically invoked by the compiler.

If the class provides only one constructor definition, all invocations of operator new must
provide the correct number and type of arguments to pass to that constructor. For the
WordCount class, we must now always supply three arguments when invoking operator
new. In particular, we can no longer create a class object with no arguments. The following
invocation, for example, results in a compile-time error:

WordCount theObj = new WordCount(); // error

because the only constructor we've provided expects three arguments.

One of the decisions we must make as class designers is whether to provide constructors
and, if so, how many to provide. That is, how many ways do we wish to support
constructing an object of our class?

We can define multiple constructors, provided that the parameter list of each constructor is
unique in either the number or type of its parameters. (When we provide multiple

instances of a function with the same name, we say that we have overloaded the function.)
For example, a second WordCount constructor requires only that the user provide a file
name:

public WordCount(string file name)
this(file name, false, traceFlags.turnOff) {}

A class constructor can invoke a second constructor of its class. The syntax requires three
elements:

1. A colon (:) following the signature of the constructor, which alerts both the
compiler and reader of the code that there will be an additional constructor
invocation.

2. The this keyword, which alerts both the compiler and the reader of the code that
the constructor being invoked is a member of this class.

3. The arguments to be passed to the other constructor, whose type and number
determine exactly which other constructor is invoked.

The constructor represented by the this keyword is invoked first. In our case, this is the
three-parameter constructor. When this constructor terminates, the body of the original
constructor is invoked. In our case, there is nothing for it to do. This is why we've provided
an empty constructor body.

The following Point3D class is another example of the dispatch-to-another-instance
constructor idiom. Its purpose is to allow the user to create a Point3D object with three,
two, one, or no initial values. Each absent coordinate value is assigned a default value of 0:

Point3D origin = new Point3D(); // Point3D(0,0,0)

Point3D x offset = new Point3D(1.0) // Point3D(1.0,0,0)
Point3D translate = new Point3D(1.0,1.0); // Point3D(1.0,1.0,0)
Point3D mumble = new Point3D(1.0,1.0,1.0);

The Point3D constructor set to support this would look like this. (Note that the
declaration order is not significant.)

class Point3D

{
public Point3D(double vl, double v2, double v3)
{ x =vl; vy =v2; z = v3; }

public Point3D (double vl1,double v2): this(vl,v2,0.0) {}
public Point3D(double wvl) : this(vl, 0.0, 0.0)({}
public Point3D() : this(0.0, 0.0, 0.0){}

//

It is possible to declare a nonpublic constructor —that is, as either private or
protected. A nonpublic constructor is unavailable to users of the class. However, it can
be invoked within the class member functions, allowing the class to create specialized
objects for internal use.

C# provides the class designer with three initialization options, only one of which requires
the introduction of a class constructor. A side effect of the new expression is the automatic
initialization of each data member to its type's default value. We never need to explicitly
set a data member to its default value.

If a value other than the default value needs to be set, we have two choices for how to set
it. If the initialization is based on user input, we'll need to solicit that input through a
constructor. Otherwise we can specify it as part of the member declaration.

2.8 The Implicit this Reference

Up to this point, all our data members and member functions have been instance members.
An instance data member has a copy of itself stored within each class object that we
create. To call a member function an instance member means that the function must be
invoked thro